Exploring machine learning trends in poverty mapping: A review and meta-analysis

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Badri Raj Lamichhane , Mahmud Isnan , Teerayut Horanont
{"title":"Exploring machine learning trends in poverty mapping: A review and meta-analysis","authors":"Badri Raj Lamichhane ,&nbsp;Mahmud Isnan ,&nbsp;Teerayut Horanont","doi":"10.1016/j.srs.2025.100200","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning (ML) has rapidly advanced as a transformative tool across numerous fields, offering new avenues for addressing poverty-related challenges. This study provides a comprehensive review and meta-analysis of 215 peer-reviewed articles published on Scopus from 2014 to 2023, underscoring the capacity of ML methods to enhance poverty mapping through satellite data analysis. Our findings highlight the significant role of ML in revealing micro-geographical poverty patterns, enabling more granular and accurate poverty assessments. By aggregating and systematically evaluating findings from the past decade, this meta-analysis uniquely identifies overarching trends and methodological insights in ML-driven poverty mapping, distinguishing itself from previous reviews that primarily synthesize existing literature. The nighttime light index emerged as a robust indicator for poverty estimation, though its predictive power improves significantly when combined with daytime features like land cover and building data. Random Forest consistently demonstrated high interpretability and predictive accuracy as the most widely adopted ML model. Key contributions from regions such as the United States, China, and India illustrate the substantial progress and applicability of ML techniques in poverty mapping. This research seeks to provide policymakers with enhanced analytical tools for nuanced poverty assessment, guiding more effective policy decisions aimed at fostering equitable development on a global scale.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100200"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017225000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) has rapidly advanced as a transformative tool across numerous fields, offering new avenues for addressing poverty-related challenges. This study provides a comprehensive review and meta-analysis of 215 peer-reviewed articles published on Scopus from 2014 to 2023, underscoring the capacity of ML methods to enhance poverty mapping through satellite data analysis. Our findings highlight the significant role of ML in revealing micro-geographical poverty patterns, enabling more granular and accurate poverty assessments. By aggregating and systematically evaluating findings from the past decade, this meta-analysis uniquely identifies overarching trends and methodological insights in ML-driven poverty mapping, distinguishing itself from previous reviews that primarily synthesize existing literature. The nighttime light index emerged as a robust indicator for poverty estimation, though its predictive power improves significantly when combined with daytime features like land cover and building data. Random Forest consistently demonstrated high interpretability and predictive accuracy as the most widely adopted ML model. Key contributions from regions such as the United States, China, and India illustrate the substantial progress and applicability of ML techniques in poverty mapping. This research seeks to provide policymakers with enhanced analytical tools for nuanced poverty assessment, guiding more effective policy decisions aimed at fostering equitable development on a global scale.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信