“Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand”

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-15 DOI:10.1016/j.mex.2025.103207
Mr. Amol Pandurang Yadav , Dr. Sandip.R. Patil
{"title":"“Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand”","authors":"Mr. Amol Pandurang Yadav ,&nbsp;Dr. Sandip.R. Patil","doi":"10.1016/j.mex.2025.103207","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.<ul><li><span>•</span><span><div>Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.</div></span></li><li><span>•</span><span><div>Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.</div></span></li><li><span>•</span><span><div>Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.</div></span></li></ul>Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103207"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221501612500055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.
  • Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.
  • Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.
  • Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.
Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.

Abstract Image

"利用堆叠式自动编码器神经网络优化仿生手的 sEMG 手势识别"
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信