Explainable Differential Privacy-Hyperdimensional Computing for Balancing Privacy and Transparency in Additive Manufacturing Monitoring

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Fardin Jalil Piran , Prathyush P. Poduval , Hamza Errahmouni Barkam , Mohsen Imani , Farhad Imani
{"title":"Explainable Differential Privacy-Hyperdimensional Computing for Balancing Privacy and Transparency in Additive Manufacturing Monitoring","authors":"Fardin Jalil Piran ,&nbsp;Prathyush P. Poduval ,&nbsp;Hamza Errahmouni Barkam ,&nbsp;Mohsen Imani ,&nbsp;Farhad Imani","doi":"10.1016/j.engappai.2025.110282","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning (ML) models integrated with in-situ sensing offer transformative solutions for defect detection in Additive Manufacturing (AM), but this integration brings critical challenges in safeguarding sensitive data, such as part designs and material compositions. Differential Privacy (DP), which introduces mathematically controlled noise, provides a balance between data utility and privacy. However, black-box Artificial Intelligence (AI) models often obscure how this noise impacts model accuracy, complicating the optimization of privacy–accuracy trade-offs. This study introduces the Differential Privacy-Hyperdimensional Computing (DP-HD) framework, a novel approach combining Explainable AI (XAI) and vector symbolic paradigms to quantify and predict noise effects on accuracy using a Signal-to-Noise Ratio (SNR) metric. DP-HD enables precise tuning of DP noise levels, ensuring an optimal balance between privacy and performance. The framework has been validated using real-world AM data, demonstrating its applicability to industrial environments. Experimental results demonstrate DP-HD’s capability to achieve state-of-the-art accuracy (94.43%) with robust privacy protections in anomaly detection for AM, even under significant noise conditions. Beyond AM, DP-HD holds substantial promise for broader applications in privacy-sensitive domains such as healthcare, financial services, and government data management, where securing sensitive data while maintaining high ML performance is paramount.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110282"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625002829","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) models integrated with in-situ sensing offer transformative solutions for defect detection in Additive Manufacturing (AM), but this integration brings critical challenges in safeguarding sensitive data, such as part designs and material compositions. Differential Privacy (DP), which introduces mathematically controlled noise, provides a balance between data utility and privacy. However, black-box Artificial Intelligence (AI) models often obscure how this noise impacts model accuracy, complicating the optimization of privacy–accuracy trade-offs. This study introduces the Differential Privacy-Hyperdimensional Computing (DP-HD) framework, a novel approach combining Explainable AI (XAI) and vector symbolic paradigms to quantify and predict noise effects on accuracy using a Signal-to-Noise Ratio (SNR) metric. DP-HD enables precise tuning of DP noise levels, ensuring an optimal balance between privacy and performance. The framework has been validated using real-world AM data, demonstrating its applicability to industrial environments. Experimental results demonstrate DP-HD’s capability to achieve state-of-the-art accuracy (94.43%) with robust privacy protections in anomaly detection for AM, even under significant noise conditions. Beyond AM, DP-HD holds substantial promise for broader applications in privacy-sensitive domains such as healthcare, financial services, and government data management, where securing sensitive data while maintaining high ML performance is paramount.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信