DARF: Depth-Aware Generalizable Neural Radiance Field

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yue Shi, Dingyi Rong, Chang Chen, Chaofan Ma, Bingbing Ni, Wenjun Zhang
{"title":"DARF: Depth-Aware Generalizable Neural Radiance Field","authors":"Yue Shi,&nbsp;Dingyi Rong,&nbsp;Chang Chen,&nbsp;Chaofan Ma,&nbsp;Bingbing Ni,&nbsp;Wenjun Zhang","doi":"10.1016/j.displa.2025.102996","DOIUrl":null,"url":null,"abstract":"<div><div>Neural Radiance Field (NeRF) has revolutionized novel-view rendering tasks and achieved impressive results. However, the inefficient sampling and per-scene optimization hinder its wide applications. Though some generalizable NeRFs have been proposed, the rendering quality is unsatisfactory due to the lack of geometry and scene uniqueness. To address these issues, we propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy to perform efficient novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalizable NeRFs, our framework infers the unseen scenes on both pixel level and geometry level with only a few input images. By introducing a pre-trained depth estimation module to derive the depth prior, narrowing down the ray sampling interval to the proximity space of the estimated surface, and sampling in expectation maximum position, we preserve scene characteristics while learning common attributes for novel-view synthesis. Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist with more informative representation learning. Extensive experiments on indoor and outdoor datasets show that compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation. Our code is available on <span><span>https://github.com/shiyue001/DARF.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 102996"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Neural Radiance Field (NeRF) has revolutionized novel-view rendering tasks and achieved impressive results. However, the inefficient sampling and per-scene optimization hinder its wide applications. Though some generalizable NeRFs have been proposed, the rendering quality is unsatisfactory due to the lack of geometry and scene uniqueness. To address these issues, we propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy to perform efficient novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalizable NeRFs, our framework infers the unseen scenes on both pixel level and geometry level with only a few input images. By introducing a pre-trained depth estimation module to derive the depth prior, narrowing down the ray sampling interval to the proximity space of the estimated surface, and sampling in expectation maximum position, we preserve scene characteristics while learning common attributes for novel-view synthesis. Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist with more informative representation learning. Extensive experiments on indoor and outdoor datasets show that compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation. Our code is available on https://github.com/shiyue001/DARF.git.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信