{"title":"DARF: Depth-Aware Generalizable Neural Radiance Field","authors":"Yue Shi, Dingyi Rong, Chang Chen, Chaofan Ma, Bingbing Ni, Wenjun Zhang","doi":"10.1016/j.displa.2025.102996","DOIUrl":null,"url":null,"abstract":"<div><div>Neural Radiance Field (NeRF) has revolutionized novel-view rendering tasks and achieved impressive results. However, the inefficient sampling and per-scene optimization hinder its wide applications. Though some generalizable NeRFs have been proposed, the rendering quality is unsatisfactory due to the lack of geometry and scene uniqueness. To address these issues, we propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy to perform efficient novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalizable NeRFs, our framework infers the unseen scenes on both pixel level and geometry level with only a few input images. By introducing a pre-trained depth estimation module to derive the depth prior, narrowing down the ray sampling interval to the proximity space of the estimated surface, and sampling in expectation maximum position, we preserve scene characteristics while learning common attributes for novel-view synthesis. Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist with more informative representation learning. Extensive experiments on indoor and outdoor datasets show that compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation. Our code is available on <span><span>https://github.com/shiyue001/DARF.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 102996"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000332","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Neural Radiance Field (NeRF) has revolutionized novel-view rendering tasks and achieved impressive results. However, the inefficient sampling and per-scene optimization hinder its wide applications. Though some generalizable NeRFs have been proposed, the rendering quality is unsatisfactory due to the lack of geometry and scene uniqueness. To address these issues, we propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy to perform efficient novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalizable NeRFs, our framework infers the unseen scenes on both pixel level and geometry level with only a few input images. By introducing a pre-trained depth estimation module to derive the depth prior, narrowing down the ray sampling interval to the proximity space of the estimated surface, and sampling in expectation maximum position, we preserve scene characteristics while learning common attributes for novel-view synthesis. Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist with more informative representation learning. Extensive experiments on indoor and outdoor datasets show that compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation. Our code is available on https://github.com/shiyue001/DARF.git.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.