Multi-level perturbations in image and feature spaces for semi-supervised medical image segmentation

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Feiniu Yuan , Biao Xiang , Zhengxiao Zhang , Changhong Xie , Yuming Fang
{"title":"Multi-level perturbations in image and feature spaces for semi-supervised medical image segmentation","authors":"Feiniu Yuan ,&nbsp;Biao Xiang ,&nbsp;Zhengxiao Zhang ,&nbsp;Changhong Xie ,&nbsp;Yuming Fang","doi":"10.1016/j.displa.2025.103001","DOIUrl":null,"url":null,"abstract":"<div><div>Consistency regularization has emerged as a vital training strategy for semi-supervised learning. It is very important for medical image segmentation due to rare labeled data. To greatly enhance consistency regularization, we propose a novel Semi-supervised Learning framework with Multi-level Perturbations (SLMP) in both image and feature spaces. In image space, we propose external perturbations with three levels to greatly increase data variations. A low-level perturbation uses traditional augmentation techniques for firstly expanding data. Then, a middle-level one adopts copying and pasting techniques to combine low-level augmented versions of labeled and unlabeled data for generating new images. Middle-level perturbed images contain novel contents, which are totally different from original ones. Finally, a high-level one generates images from middle-level augmented data. In feature space, we design an Indicative Fusion Block (IFB) to propose internal perturbations for randomly mixing the encoded features of middle and high-level augmented images. By utilizing multi-level perturbations, we design a student–teacher semi-supervised learning framework for effectively improving the model resilience to strong variances. Experimental results show that our model achieves the state-of-the-art performance across various evaluation metrics on 2D and 3D medical image datasets. Our model exhibits the powerful capability of feature learning, and significantly outperforms existing state-of-the-art methods. Intensive ablation studies prove that our contributions are effective and significant. The model code is available at <span><span>https://github.com/CamillerFerros/SLMP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103001"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000381","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Consistency regularization has emerged as a vital training strategy for semi-supervised learning. It is very important for medical image segmentation due to rare labeled data. To greatly enhance consistency regularization, we propose a novel Semi-supervised Learning framework with Multi-level Perturbations (SLMP) in both image and feature spaces. In image space, we propose external perturbations with three levels to greatly increase data variations. A low-level perturbation uses traditional augmentation techniques for firstly expanding data. Then, a middle-level one adopts copying and pasting techniques to combine low-level augmented versions of labeled and unlabeled data for generating new images. Middle-level perturbed images contain novel contents, which are totally different from original ones. Finally, a high-level one generates images from middle-level augmented data. In feature space, we design an Indicative Fusion Block (IFB) to propose internal perturbations for randomly mixing the encoded features of middle and high-level augmented images. By utilizing multi-level perturbations, we design a student–teacher semi-supervised learning framework for effectively improving the model resilience to strong variances. Experimental results show that our model achieves the state-of-the-art performance across various evaluation metrics on 2D and 3D medical image datasets. Our model exhibits the powerful capability of feature learning, and significantly outperforms existing state-of-the-art methods. Intensive ablation studies prove that our contributions are effective and significant. The model code is available at https://github.com/CamillerFerros/SLMP.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信