Evolutionary population dynamics and conservation strategies for Salix baileyi - a species with extremely small populations

IF 3.5 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Guang-Nan Gong , Yuan Wang , Zhi-Ying Zhu , Yi Wang , Elvira Hörandl , Xiao-Ru Wang , Zhi-Qing Xue , Li He
{"title":"Evolutionary population dynamics and conservation strategies for Salix baileyi - a species with extremely small populations","authors":"Guang-Nan Gong ,&nbsp;Yuan Wang ,&nbsp;Zhi-Ying Zhu ,&nbsp;Yi Wang ,&nbsp;Elvira Hörandl ,&nbsp;Xiao-Ru Wang ,&nbsp;Zhi-Qing Xue ,&nbsp;Li He","doi":"10.1016/j.gecco.2025.e03504","DOIUrl":null,"url":null,"abstract":"<div><div>Effective conservation actions for endangered species rely on a good understanding of the evolutionary forces driving population decline. Detailed genetic analyses, including assessment of demographic history, population structure and diversity, are essential for gaining insights into the species’ adaptive potential and developing strategies of genetic rescue. <em>Salix baileyi</em> is an endemic vulnerable species in China with extremely small population sizes and a limited distribution. The samples of <em>S. baileyi</em> used for whole-genome resequencing cover its whole distribution. The results reveal four distinct genetic lineages within <em>S. baileyi</em> (DBSW, DBSE, TMS, and LXS), with divergence likely driven by paleoclimatic events and geographic barriers. All populations contracted during the Marine Isotope Stage 5 (MIS 5) up to the Last Glacial Maximum (LGM), with most recovering after the LGM, except for LXS lineage that continued to decline. Our results show that climate events, isolation barriers, inbreeding, and population bottlenecks have impacted the genetic status and evolutionary potential of these lineages of <em>S. baileyi</em>. Lineage-specific conservation measures should be applied based on the unique population dynamics of each lineage. This study provides valuable results for studies of vulnerable dioecious plants.</div></div>","PeriodicalId":54264,"journal":{"name":"Global Ecology and Conservation","volume":"58 ","pages":"Article e03504"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351989425001052","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Effective conservation actions for endangered species rely on a good understanding of the evolutionary forces driving population decline. Detailed genetic analyses, including assessment of demographic history, population structure and diversity, are essential for gaining insights into the species’ adaptive potential and developing strategies of genetic rescue. Salix baileyi is an endemic vulnerable species in China with extremely small population sizes and a limited distribution. The samples of S. baileyi used for whole-genome resequencing cover its whole distribution. The results reveal four distinct genetic lineages within S. baileyi (DBSW, DBSE, TMS, and LXS), with divergence likely driven by paleoclimatic events and geographic barriers. All populations contracted during the Marine Isotope Stage 5 (MIS 5) up to the Last Glacial Maximum (LGM), with most recovering after the LGM, except for LXS lineage that continued to decline. Our results show that climate events, isolation barriers, inbreeding, and population bottlenecks have impacted the genetic status and evolutionary potential of these lineages of S. baileyi. Lineage-specific conservation measures should be applied based on the unique population dynamics of each lineage. This study provides valuable results for studies of vulnerable dioecious plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Ecology and Conservation
Global Ecology and Conservation Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.10
自引率
5.00%
发文量
346
审稿时长
83 days
期刊介绍: Global Ecology and Conservation is a peer-reviewed, open-access journal covering all sub-disciplines of ecological and conservation science: from theory to practice, from molecules to ecosystems, from regional to global. The fields covered include: organismal, population, community, and ecosystem ecology; physiological, evolutionary, and behavioral ecology; and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信