ADPF: Anti-inference differentially private protocol for federated learning

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zirun Zhao, Zhaowen Lin, Yi Sun
{"title":"ADPF: Anti-inference differentially private protocol for federated learning","authors":"Zirun Zhao,&nbsp;Zhaowen Lin,&nbsp;Yi Sun","doi":"10.1016/j.comnet.2025.111130","DOIUrl":null,"url":null,"abstract":"<div><div>With the popularity of commercial artificial intelligence (AI), the importance of individual data is constantly increasing for the construction of large models. To ensure the utility of the released model, the security of individual data must be guaranteed with high confidence. Federated learning (FL), as the common paradigm for distributed learning, are usually subjected to various external attacks such as inversion attack or membership inference attack. Some solutions based on differential privacy (DP) are proposed to resist data revelation. However, the intelligence and collusion of adversaries are often underestimated during the training process. In this paper, an anti-inference differentially private federated learning protocol ADPF is proposed for data protection in an untrusted environment. ADPF models the attacker-defender scenario as a two-phase complete information dynamic game and designs optimization problems to find optimal budget allocations in different phases of training. Comparative experiments demonstrate that the performance of ADPF outperforms state-of-the-art differentially private federated learning protocol in both attack resistance and model utility.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"261 ","pages":"Article 111130"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625000982","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the popularity of commercial artificial intelligence (AI), the importance of individual data is constantly increasing for the construction of large models. To ensure the utility of the released model, the security of individual data must be guaranteed with high confidence. Federated learning (FL), as the common paradigm for distributed learning, are usually subjected to various external attacks such as inversion attack or membership inference attack. Some solutions based on differential privacy (DP) are proposed to resist data revelation. However, the intelligence and collusion of adversaries are often underestimated during the training process. In this paper, an anti-inference differentially private federated learning protocol ADPF is proposed for data protection in an untrusted environment. ADPF models the attacker-defender scenario as a two-phase complete information dynamic game and designs optimization problems to find optimal budget allocations in different phases of training. Comparative experiments demonstrate that the performance of ADPF outperforms state-of-the-art differentially private federated learning protocol in both attack resistance and model utility.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信