Expert-level policy style measurement via knowledge distillation with large language model collaboration

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yujie Zhang , Biao Huang , Weikang Yuan , Zhuoren Jiang , Longsheng Peng , Shuai Chen , Jie-Sheng Tan-Soo
{"title":"Expert-level policy style measurement via knowledge distillation with large language model collaboration","authors":"Yujie Zhang ,&nbsp;Biao Huang ,&nbsp;Weikang Yuan ,&nbsp;Zhuoren Jiang ,&nbsp;Longsheng Peng ,&nbsp;Shuai Chen ,&nbsp;Jie-Sheng Tan-Soo","doi":"10.1016/j.ipm.2025.104090","DOIUrl":null,"url":null,"abstract":"<div><div>Policy style is a crucial concept in policy science that reflects persistent patterns in the policy process across different governance settings. Despite its importance, policy style measurement faces issues of complexity, subjectivity, data sparseness, and computational cost. To overcome these obstacles, we propose <strong>KOALA</strong>, a novel <strong><u>K</u></strong>n<strong><u>O</u></strong>wledge distillation framework based on large l<strong><u>A</u></strong>nguage mode<strong><u>L</u></strong> coll<strong><u>A</u></strong>boration. It transforms the weak scoring abilities of LLMs into a pairwise ranking problem, employs a small set of expert-annotated samples for non-parametric learning, and utilizes knowledge distillation to transfer insights from LLMs to a smaller, more efficient model. The framework incorporates multiple LLM-based agents (Prompter, Ranker, and Analyst) collaborating to comprehend complex measurement standards and self-explain policy style definitions. We validate KOALA on 4,572 Chinese government work reports (1954–2019) from central, provincial, and municipal levels, with a focus on the imposition dimension of policy style. Extensive experiments demonstrate KOALA’s effectiveness in measuring the intensity of policy style, highlighting its superiority over state-of-the-art methods. While GPT-4 achieves only 66% accuracy in pairwise ranking of policy styles, KOALA, despite being based on GPT-3.5, achieves a remarkable 85% accuracy, highlighting significant performance improvement. This framework offers a transferable approach for quantifying complex social science concepts in textual data, bridging computational techniques with social science research.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104090"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000329","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Policy style is a crucial concept in policy science that reflects persistent patterns in the policy process across different governance settings. Despite its importance, policy style measurement faces issues of complexity, subjectivity, data sparseness, and computational cost. To overcome these obstacles, we propose KOALA, a novel KnOwledge distillation framework based on large lAnguage modeL collAboration. It transforms the weak scoring abilities of LLMs into a pairwise ranking problem, employs a small set of expert-annotated samples for non-parametric learning, and utilizes knowledge distillation to transfer insights from LLMs to a smaller, more efficient model. The framework incorporates multiple LLM-based agents (Prompter, Ranker, and Analyst) collaborating to comprehend complex measurement standards and self-explain policy style definitions. We validate KOALA on 4,572 Chinese government work reports (1954–2019) from central, provincial, and municipal levels, with a focus on the imposition dimension of policy style. Extensive experiments demonstrate KOALA’s effectiveness in measuring the intensity of policy style, highlighting its superiority over state-of-the-art methods. While GPT-4 achieves only 66% accuracy in pairwise ranking of policy styles, KOALA, despite being based on GPT-3.5, achieves a remarkable 85% accuracy, highlighting significant performance improvement. This framework offers a transferable approach for quantifying complex social science concepts in textual data, bridging computational techniques with social science research.
通过与大型语言模型协作的知识蒸馏进行专家级策略风格度量
策略风格是策略科学中的一个关键概念,它反映了跨不同治理设置的策略过程中的持久模式。尽管策略风格度量很重要,但它面临着复杂性、主观性、数据稀疏性和计算成本等问题。为了克服这些障碍,我们提出了一种新的基于大型语言模型协作的知识蒸馏框架KOALA。它将llm的弱评分能力转化为两两排序问题,采用一小部分专家注释样本进行非参数学习,并利用知识蒸馏将llm的见解转移到更小、更有效的模型中。该框架结合了多个基于llm的代理(Prompter、Ranker和Analyst),它们协作理解复杂的度量标准和自我解释的策略风格定义。我们对中国中央、省、市各级4572份政府工作报告(1954-2019)进行了KOALA验证,重点关注政策风格的实施维度。大量的实验证明了KOALA在衡量政策风格强度方面的有效性,突出了其优于最先进方法的优越性。虽然GPT-4在政策风格的两两排序中仅达到66%的准确率,但KOALA尽管基于GPT-3.5,却达到了惊人的85%的准确率,突出了显着的性能改进。该框架为文本数据中复杂的社会科学概念的量化提供了一种可转移的方法,将计算技术与社会科学研究联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信