Hippocampus and basal forebrain degeneration differentially impact cognition in Lewy body spectrum disorders

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2025-02-20 DOI:10.1093/brain/awaf070
Alexander Rau, Lea Philipsen, Lars Frings, Patricia Müller-Glaw, Marco Reisert, Hansjörg Mast, Bastian E A Sajonz, Wolfgang H Jost, Horst Urbach, Cornelius Weiller, Jonas A Hosp, Tobias Bormann, Michel Rijntjes, Sabine Hellwig, Nils Schröter
{"title":"Hippocampus and basal forebrain degeneration differentially impact cognition in Lewy body spectrum disorders","authors":"Alexander Rau, Lea Philipsen, Lars Frings, Patricia Müller-Glaw, Marco Reisert, Hansjörg Mast, Bastian E A Sajonz, Wolfgang H Jost, Horst Urbach, Cornelius Weiller, Jonas A Hosp, Tobias Bormann, Michel Rijntjes, Sabine Hellwig, Nils Schröter","doi":"10.1093/brain/awaf070","DOIUrl":null,"url":null,"abstract":"Cognitive impairment is a major contributor to the burden in Parkinson’s disease and dementia with Lewy bodies, both of which make up the Lewy body disease spectrum, with dementia affecting up to 80% of patients over the course of the disease. Macroatrophy and microstructural neurodegenerative alterations are typically assessed separately in MRI, although neuropathologically they represent the same mechanism - the loss of functional tissue. To gain a deeper insight into the differential impact of neurodegeneration in the basal forebrain and hippocampus on cognition, we have developed a combined volumetric-mesoscopic approach to more comprehensively quantify the extent of neurodegeneration. This approach might facilitate a more profound understanding of cognitive decline. We report a retrospective analysis of MRI data from 147 patients with Lewy body disease (Parkinson’s disease with normal cognition=50, with mild cognitive impairment=59, with dementia=25 and 13 patients with dementia with Lewy bodies) and 30 healthy controls. Neurodegeneration of the basal forebrain and hippocampus was quantified by assessing the total macrostructural volume and microstructural metrics. Additionally, these parameters were combined to evaluate the potential of the functional volume for capturing the coinciding pathophysiological processes. The extent of neurodegeneration was compared between healthy controls, patients with normal cognition, mild impaired cognition, and dementia. Furthermore, the integrity of the basal forebrain and hippocampus was tested for associations with subdomains of cognitive performance as assessed with the Mattis Dementia Rating Scale 2. Our results revealed significant macro- and microstructural degeneration in the basal forebrain and hippocampus in patients with Parkinson's disease dementia and dementia with Lewy bodies when compared to healthy controls or Lewy body disease without dementia. Combining volumetric and microstructural metrics to calculate the functional volume provided the strongest effects across cognitive function in Lewy body disease. Moreover, in a combined model of basal forebrain and hippocampus, degeneration of the basal forebrain only was significantly associated with impaired initiation (p=0.003) and trend-level linked to attention (p=0.06), whereas hippocampal integrity significantly determined memory (p=0.005) and conceptualization at trend level (p=0.06). Combining macro- and microstructural techniques to investigate the functional volume of the basal forebrain and hippocampus revealed that basal forebrain and hippocampal integrity is altered only in LBD with dementia but not in LBD with normal cognition or mild cognitive impairment. Moreover, the basal forebrain and hippocampus were differentially associated with distinct neurocognitive domains, thus providing an intriguing biomarker for neurocognitive staging in LBD or individualized treatment concepts.","PeriodicalId":9063,"journal":{"name":"Brain","volume":"23 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awaf070","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive impairment is a major contributor to the burden in Parkinson’s disease and dementia with Lewy bodies, both of which make up the Lewy body disease spectrum, with dementia affecting up to 80% of patients over the course of the disease. Macroatrophy and microstructural neurodegenerative alterations are typically assessed separately in MRI, although neuropathologically they represent the same mechanism - the loss of functional tissue. To gain a deeper insight into the differential impact of neurodegeneration in the basal forebrain and hippocampus on cognition, we have developed a combined volumetric-mesoscopic approach to more comprehensively quantify the extent of neurodegeneration. This approach might facilitate a more profound understanding of cognitive decline. We report a retrospective analysis of MRI data from 147 patients with Lewy body disease (Parkinson’s disease with normal cognition=50, with mild cognitive impairment=59, with dementia=25 and 13 patients with dementia with Lewy bodies) and 30 healthy controls. Neurodegeneration of the basal forebrain and hippocampus was quantified by assessing the total macrostructural volume and microstructural metrics. Additionally, these parameters were combined to evaluate the potential of the functional volume for capturing the coinciding pathophysiological processes. The extent of neurodegeneration was compared between healthy controls, patients with normal cognition, mild impaired cognition, and dementia. Furthermore, the integrity of the basal forebrain and hippocampus was tested for associations with subdomains of cognitive performance as assessed with the Mattis Dementia Rating Scale 2. Our results revealed significant macro- and microstructural degeneration in the basal forebrain and hippocampus in patients with Parkinson's disease dementia and dementia with Lewy bodies when compared to healthy controls or Lewy body disease without dementia. Combining volumetric and microstructural metrics to calculate the functional volume provided the strongest effects across cognitive function in Lewy body disease. Moreover, in a combined model of basal forebrain and hippocampus, degeneration of the basal forebrain only was significantly associated with impaired initiation (p=0.003) and trend-level linked to attention (p=0.06), whereas hippocampal integrity significantly determined memory (p=0.005) and conceptualization at trend level (p=0.06). Combining macro- and microstructural techniques to investigate the functional volume of the basal forebrain and hippocampus revealed that basal forebrain and hippocampal integrity is altered only in LBD with dementia but not in LBD with normal cognition or mild cognitive impairment. Moreover, the basal forebrain and hippocampus were differentially associated with distinct neurocognitive domains, thus providing an intriguing biomarker for neurocognitive staging in LBD or individualized treatment concepts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信