Ultrafast simultaneous manipulation of multiple ferroic orders through nonlinear phonon excitation

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniel A. Bustamante Lopez, Dominik M. Juraschek, Michael Fechner, Xianghan Xu, Sang-Wook Cheong, Wanzheng Hu
{"title":"Ultrafast simultaneous manipulation of multiple ferroic orders through nonlinear phonon excitation","authors":"Daniel A. Bustamante Lopez, Dominik M. Juraschek, Michael Fechner, Xianghan Xu, Sang-Wook Cheong, Wanzheng Hu","doi":"10.1038/s41535-025-00738-7","DOIUrl":null,"url":null,"abstract":"<p>Recent experimental studies have demonstrated the possibility of utilizing strong terahertz pulses to manipulate individual ferroic orders on pico- and femtosecond timescales. Here, we extend these findings and showcase the simultaneous manipulation of multiple ferroic orders in BiFeO<sub>3</sub>, a material that is both ferroelectric and antiferromagnetic at room temperature. We find a concurrent enhancement of ferroelectric and antiferromagnetic second-harmonic generation (SHG) following the resonant excitation of a high-frequency fully-symmetric phonon mode. Based on first-principles calculations and phenomenological modeling, we ascribe this observation to the inherent coupling of the two ferroic orders to the nonequilibrium distortions induced in the crystal lattice by nonlinearly driven phonons. Our finding highlights the potential of nonlinear phononics as a technique for manipulating multiple ferroic order parameters at once. In addition, this approach provides a promising avenue to studying the dynamical magnetic and polarization behavior, as well as their intrinsic coupling, on ultrashort timescales.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"50 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00738-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experimental studies have demonstrated the possibility of utilizing strong terahertz pulses to manipulate individual ferroic orders on pico- and femtosecond timescales. Here, we extend these findings and showcase the simultaneous manipulation of multiple ferroic orders in BiFeO3, a material that is both ferroelectric and antiferromagnetic at room temperature. We find a concurrent enhancement of ferroelectric and antiferromagnetic second-harmonic generation (SHG) following the resonant excitation of a high-frequency fully-symmetric phonon mode. Based on first-principles calculations and phenomenological modeling, we ascribe this observation to the inherent coupling of the two ferroic orders to the nonequilibrium distortions induced in the crystal lattice by nonlinearly driven phonons. Our finding highlights the potential of nonlinear phononics as a technique for manipulating multiple ferroic order parameters at once. In addition, this approach provides a promising avenue to studying the dynamical magnetic and polarization behavior, as well as their intrinsic coupling, on ultrashort timescales.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信