Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf025
Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner
{"title":"Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.","authors":"Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner","doi":"10.1093/bioadv/vbaf025","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.</p><p><strong>Results: </strong>Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.</p><p><strong>Availability and implementation: </strong>Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf025"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.

Results: Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.

Availability and implementation: Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.

Hypermut 3:在允许多状态字符的已定义核苷酸上下文中识别特定的突变模式。
动机:检测病毒序列中APOBEC3F-和apobec3g诱导的突变有助于鉴定高突变序列。这些序列不代表病毒进化,因此可能改变下游序列分析的结果。我们之前发布了Hypermut软件,它可以检测相对于引用的序列中的超突变事件。该方法有两个版本作为webtool提供。这两种方法都不考虑序列比对中的多状态字符或间隙。结果:在这里,我们提出了一个更新的、用户友好的web和命令行版本的Hypermut,具有处理多状态字符和序列对齐中的间隙的功能。该工具允许将超突变检测直接集成到序列分析管道中。与前一个工具一样,虽然主要目的是识别G到A的超突变事件,但可以指定任何突变模式和上下文。可用性和实现:Hypermut 3是用Python 3编写的。它可以作为命令行工具在https://github.com/MolEvolEpid/hypermut3获得,也可以作为web工具在https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信