Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner
{"title":"Hypermut 3: identifying specific mutational patterns in a defined nucleotide context that allows multistate characters.","authors":"Zena Lapp, Hyejin Yoon, Brian Foley, Thomas Leitner","doi":"10.1093/bioadv/vbaf025","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.</p><p><strong>Results: </strong>Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.</p><p><strong>Availability and implementation: </strong>Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf025"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: The detection of APOBEC3F- and APOBEC3G-induced mutations in virus sequences is useful for identifying hypermutated sequences. These sequences are not representative of viral evolution and can therefore alter the results of downstream sequence analyses if included. We previously published the software Hypermut, which detects hypermutation events in sequences relative to a reference. Two versions of this method are available as a webtool. Neither of these methods consider multistate characters or gaps in the sequence alignment.
Results: Here, we present an updated, user-friendly web and command-line version of Hypermut with functionality to handle multistate characters and gaps in the sequence alignment. This tool allows for straightforward integration of hypermutation detection into sequence analysis pipelines. As with the previous tool, while the main purpose is to identify G to A hypermutation events, any mutational pattern and context can be specified.
Availability and implementation: Hypermut 3 is written in Python 3. It is available as a command-line tool at https://github.com/MolEvolEpid/hypermut3 and as a webtool at https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermutv3.html.