The Effects of Black Gill Disease on the Respiration of Penaeus setiferus, the Atlantic White Shrimp, during Activity and Hypoxia: Treadmill Studies.

IF 2.1 4区 生物学 Q2 BIOLOGY
Biological Bulletin Pub Date : 2024-02-01 Epub Date: 2024-12-10 DOI:10.1086/733347
Louis E Burnett, Michael R Kendrick
{"title":"The Effects of Black Gill Disease on the Respiration of <i>Penaeus setiferus</i>, the Atlantic White Shrimp, during Activity and Hypoxia: Treadmill Studies.","authors":"Louis E Burnett, Michael R Kendrick","doi":"10.1086/733347","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe Atlantic white shrimp, <i>Penaeus setiferus</i>, is a commercially important species that is abundant along the United States' east coast and Gulf of Mexico. Like other similar organisms, this species is vulnerable to black gill disease, where gills become heavily melanized as part of an immune response associated with gill irritants or parasitic infection. The melanization blackens the gills, making the disease obvious. Black gill is thought to be stimulated by high temperature, high salinity, and low oxygen. In this study, we investigated whether the presence of black gill influences the ability of shrimp to take up oxygen across the gills. Shrimp were made to exercise on an underwater treadmill while measurements of oxygen uptake were made. Measurements were made in well-oxygenated water (100% air saturation) and moderate (50% air saturation) and severe (30% air saturation) hypoxia. In quiescent animals, there was no difference in oxygen uptake between control shrimp with no black gill and those with obvious black gill infections. Oxygen uptake increased by as much as twofold when shrimp were active on the treadmill. In both control and black gill groups, oxygen uptake declined in hypoxia, but the decline was greater in black gill shrimp, suggesting an impairment to taking up oxygen. Thus, black gill significantly impairs the ability of shrimp to take up oxygen under hypoxic conditions when shrimp are active. These results provide a mechanistic basis for potential negative impacts of shrimp populations suffering with outbreaks of black gill.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"246 1","pages":"52-57"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/733347","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractThe Atlantic white shrimp, Penaeus setiferus, is a commercially important species that is abundant along the United States' east coast and Gulf of Mexico. Like other similar organisms, this species is vulnerable to black gill disease, where gills become heavily melanized as part of an immune response associated with gill irritants or parasitic infection. The melanization blackens the gills, making the disease obvious. Black gill is thought to be stimulated by high temperature, high salinity, and low oxygen. In this study, we investigated whether the presence of black gill influences the ability of shrimp to take up oxygen across the gills. Shrimp were made to exercise on an underwater treadmill while measurements of oxygen uptake were made. Measurements were made in well-oxygenated water (100% air saturation) and moderate (50% air saturation) and severe (30% air saturation) hypoxia. In quiescent animals, there was no difference in oxygen uptake between control shrimp with no black gill and those with obvious black gill infections. Oxygen uptake increased by as much as twofold when shrimp were active on the treadmill. In both control and black gill groups, oxygen uptake declined in hypoxia, but the decline was greater in black gill shrimp, suggesting an impairment to taking up oxygen. Thus, black gill significantly impairs the ability of shrimp to take up oxygen under hypoxic conditions when shrimp are active. These results provide a mechanistic basis for potential negative impacts of shrimp populations suffering with outbreaks of black gill.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信