Benthic Pond Macroinvertebrates Coexist with Nearby Potentially Predatory Fish.

IF 2.1 4区 生物学 Q2 BIOLOGY
Biological Bulletin Pub Date : 2024-02-01 Epub Date: 2024-10-29 DOI:10.1086/732340
Erika V Iyengar, Austin R Hoffman, James C Russell
{"title":"Benthic Pond Macroinvertebrates Coexist with Nearby Potentially Predatory Fish.","authors":"Erika V Iyengar, Austin R Hoffman, James C Russell","doi":"10.1086/732340","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIn ponds of the northeastern United States, benthic macroinvertebrates can dominate the local biomass. Isopods, predatory leeches, and fingernail clams can attain dense populations and suffer heavy predation pressure by fish. We predicted that pond benthic macroinvertebrates would recognize the proximity of predatory fish and avoid or vacate that area as an inducible behavioral defense. We deployed cages with and without predatory fish (sunfish and golden shiners) in a naturally fishless pond in October and November of 2020 and 2021. After at least 2 days, we collected leaf packs from directly under the cages and compared the number of invertebrates residing within. Surprisingly, the population densities of the dominant taxa (isopods, leeches, and clams) suggested that they did not avoid fish. Leeches and isopods may even reside in higher numbers near live sunfish, perhaps because feces from the fish augment the locally available food and nutrient levels. Our present field results support earlier laboratory findings: benthic macroinvertebrates in ponds may not respond to fish cues. Bottom-up control may dominate in ponds, providing important implications for conservation of these threatened ecosystems.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"246 1","pages":"11-21"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/732340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractIn ponds of the northeastern United States, benthic macroinvertebrates can dominate the local biomass. Isopods, predatory leeches, and fingernail clams can attain dense populations and suffer heavy predation pressure by fish. We predicted that pond benthic macroinvertebrates would recognize the proximity of predatory fish and avoid or vacate that area as an inducible behavioral defense. We deployed cages with and without predatory fish (sunfish and golden shiners) in a naturally fishless pond in October and November of 2020 and 2021. After at least 2 days, we collected leaf packs from directly under the cages and compared the number of invertebrates residing within. Surprisingly, the population densities of the dominant taxa (isopods, leeches, and clams) suggested that they did not avoid fish. Leeches and isopods may even reside in higher numbers near live sunfish, perhaps because feces from the fish augment the locally available food and nutrient levels. Our present field results support earlier laboratory findings: benthic macroinvertebrates in ponds may not respond to fish cues. Bottom-up control may dominate in ponds, providing important implications for conservation of these threatened ecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信