Block mapping class groups and their finiteness properties.

IF 0.5 4区 数学 Q3 MATHEMATICS
Geometriae Dedicata Pub Date : 2025-01-01 Epub Date: 2025-02-18 DOI:10.1007/s10711-025-00985-9
J Aramayona, J Aroca, M Cumplido, R Skipper, X Wu
{"title":"Block mapping class groups and their finiteness properties.","authors":"J Aramayona, J Aroca, M Cumplido, R Skipper, X Wu","doi":"10.1007/s10711-025-00985-9","DOIUrl":null,"url":null,"abstract":"<p><p>Given <math><mrow><mi>g</mi> <mo>∈</mo> <mi>N</mi> <mo>∪</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>}</mo></mrow> </math> , let <math><msub><mi>Σ</mi> <mi>g</mi></msub> </math> denote the closed surface of genus <i>g</i> with a Cantor set removed, if <math><mrow><mi>g</mi> <mo><</mo> <mi>∞</mi></mrow> </math> ; or the blooming Cantor tree, when <math><mrow><mi>g</mi> <mo>=</mo> <mi>∞</mi></mrow> </math> . We construct a family <math><mrow><mi>B</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo></mrow> </math> of subgroups of <math> <mrow><mrow><mspace></mspace> <mtext>Map</mtext> <mspace></mspace></mrow> <mo>(</mo> <msub><mi>Σ</mi> <mi>g</mi></msub> <mo>)</mo></mrow> </math> whose elements preserve a <i>block decomposition</i> of <math><msub><mi>Σ</mi> <mi>g</mi></msub> </math> , and <i>eventually like act</i> like an element of <i>H</i>, where <i>H</i> is a prescribed subgroup of the mapping class group of the block. The group <math><mrow><mi>B</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo></mrow> </math> surjects onto an appropriate symmetric Thompson group of Farley-Hughes; in particular, it answers positively. Our main result asserts that <math><mrow><mi>B</mi> <mo>(</mo> <mi>H</mi> <mo>)</mo></mrow> </math> is of type <math><msub><mi>F</mi> <mi>n</mi></msub> </math> if and only if <i>H</i> is. As a consequence, for every <math><mrow><mi>g</mi> <mo>∈</mo> <mi>N</mi> <mo>∪</mo> <mo>{</mo> <mn>0</mn> <mo>,</mo> <mi>∞</mi> <mo>}</mo></mrow> </math> and every <math><mrow><mi>n</mi> <mo>≥</mo> <mn>1</mn></mrow> </math> , we construct a subgroup <math><mrow><mi>G</mi> <mo><</mo> <mrow><mspace></mspace> <mtext>Map</mtext> <mspace></mspace></mrow> <mo>(</mo> <msub><mi>Σ</mi> <mi>g</mi></msub> <mo>)</mo></mrow> </math> that is of type <math><msub><mi>F</mi> <mi>n</mi></msub> </math> but not of type <math><msub><mi>F</mi> <mrow><mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> , and which contains the mapping class group of every compact surface of genus <math><mrow><mo>≤</mo> <mi>g</mi></mrow> </math> and with non-empty boundary.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"219 2","pages":"24"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-025-00985-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given g N { 0 , } , let Σ g denote the closed surface of genus g with a Cantor set removed, if g < ; or the blooming Cantor tree, when g = . We construct a family B ( H ) of subgroups of Map ( Σ g ) whose elements preserve a block decomposition of Σ g , and eventually like act like an element of H, where H is a prescribed subgroup of the mapping class group of the block. The group B ( H ) surjects onto an appropriate symmetric Thompson group of Farley-Hughes; in particular, it answers positively. Our main result asserts that B ( H ) is of type F n if and only if H is. As a consequence, for every g N { 0 , } and every n 1 , we construct a subgroup G < Map ( Σ g ) that is of type F n but not of type F n + 1 , and which contains the mapping class group of every compact surface of genus g and with non-empty boundary.

块映射类群及其有限性。
给定g∈N∪{0,∞},令Σ g表示消去Cantor集的g属的闭曲面,若g∞;或开花的康托树,当g =∞时。我们构造了Map (Σ g)的子群族B (H),这些子群的元素保持了Σ g的块分解,最终类似于H的一个元素,其中H是块的映射类群的指定子群。群B (H)投射到一个合适的对称汤普森法利-休斯群上;特别是,它的回答是肯定的。我们的主要结论断言B (H)是F型n当且仅当H是。因此,对于每一个g∈N∪{0,∞}且每一个N≥1,我们构造了一个类型为F N但不为F N + 1的子群g Map (Σ g),它包含了每一个格≤g且具有非空边界的紧曲面的映射类群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信