Estradiol Enhances Cerebellar Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission and Improves Motor Learning Through ER-β in Vivo in Mice.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Yong-Rui Piao, Mei-Rui Li, Ming-Ze Sun, Yang Liu, Chao-Yue Chen, Chun-Ping Chu, Yuki Todo, Zheng Tang, Chun-Yan Wang, Wen-Zhe Jin, De-Lai Qiu
{"title":"Estradiol Enhances Cerebellar Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission and Improves Motor Learning Through ER-β in Vivo in Mice.","authors":"Yong-Rui Piao, Mei-Rui Li, Ming-Ze Sun, Yang Liu, Chao-Yue Chen, Chun-Ping Chu, Yuki Todo, Zheng Tang, Chun-Yan Wang, Wen-Zhe Jin, De-Lai Qiu","doi":"10.1007/s12311-025-01805-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the cerebellar cortex, 17β-estradiol (E2) binds to estrogen receptors (ERs) and plays a role in regulating cerebellar synaptic plasticity and motor learning behaviors. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of E2 on synaptic transmission between cerebellar molecular layer interneurons (MLIs) and Purkinje cells (PCs) in urethane-anesthetized mice. Using in vivo cell-attached and whole-cell recordings combined with immunohistochemistry, we examined MLI-PC synaptic responses elicited by facial air-puff stimulation. Cell-attached recordings from PCs demonstrated that air-puff stimulation of the ipsilateral whisker pad elicited MLI-PC synaptic currents (P1), which were significantly enhanced by local micro-application of E2 to the cerebellar molecular layer. The E2-induced potentiation of P1 amplitude exhibited dose dependency, with a 50% effective concentration (EC50) of 30 nM. The effects of E2 on amplitude of P1 and pause of simple spike firing were completely prevented by blockade of ERs or ERβ, but not by blockade of ERα or a G-protein coupled receptor (GPER). Application of a selective ERβ agonist mimicked and overwhelmed the E2-induced enhancement of the MLI-PC synaptic transmission. Whole-cell recording with biocytin staining showing that E2 does not change the spontaneous and the evoked spike firing properties of basket-type MLIs. Rotarod test indicated that microinjection of E2 onto the cerebellar surface significantly promotes initial motor learning ability, which is abolished by blockade of ERβ. ERβ immunoreactivity was expressed in the ML and PC layer, especially around the PC somata in the mouse cerebellar cortex. These results indicate that E2 binds to ERβ, resulting in an enhance in the cerebellar MLI-PC synaptic transmission and an improvement of initial motor learning ability in vivo in mice.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"51"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01805-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the cerebellar cortex, 17β-estradiol (E2) binds to estrogen receptors (ERs) and plays a role in regulating cerebellar synaptic plasticity and motor learning behaviors. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of E2 on synaptic transmission between cerebellar molecular layer interneurons (MLIs) and Purkinje cells (PCs) in urethane-anesthetized mice. Using in vivo cell-attached and whole-cell recordings combined with immunohistochemistry, we examined MLI-PC synaptic responses elicited by facial air-puff stimulation. Cell-attached recordings from PCs demonstrated that air-puff stimulation of the ipsilateral whisker pad elicited MLI-PC synaptic currents (P1), which were significantly enhanced by local micro-application of E2 to the cerebellar molecular layer. The E2-induced potentiation of P1 amplitude exhibited dose dependency, with a 50% effective concentration (EC50) of 30 nM. The effects of E2 on amplitude of P1 and pause of simple spike firing were completely prevented by blockade of ERs or ERβ, but not by blockade of ERα or a G-protein coupled receptor (GPER). Application of a selective ERβ agonist mimicked and overwhelmed the E2-induced enhancement of the MLI-PC synaptic transmission. Whole-cell recording with biocytin staining showing that E2 does not change the spontaneous and the evoked spike firing properties of basket-type MLIs. Rotarod test indicated that microinjection of E2 onto the cerebellar surface significantly promotes initial motor learning ability, which is abolished by blockade of ERβ. ERβ immunoreactivity was expressed in the ML and PC layer, especially around the PC somata in the mouse cerebellar cortex. These results indicate that E2 binds to ERβ, resulting in an enhance in the cerebellar MLI-PC synaptic transmission and an improvement of initial motor learning ability in vivo in mice.

雌二醇通过ER-β增强小鼠小脑分子层内含神经元-浦肯野细胞的突触传递并提高小鼠体内的运动学习能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信