{"title":"In silico characterization of the gating and selectivity mechanism of the human TPC2 cation channel.","authors":"Alp Tegin Şahin, Ulrich Zachariae","doi":"10.1085/jgp.202313506","DOIUrl":null,"url":null,"abstract":"<p><p>Two-pore channels (TPCs) are twofold symmetric endolysosomal cation channels forming important drug targets, especially for antiviral drugs. They are activated by calcium, ligand binding, and membrane voltage, and to date, they are the only ion channels shown to alter their ion selectivity depending on the type of bound ligand. However, despite their importance, ligand activation of TPCs and the molecular mechanisms underlying their ion selectivity are still poorly understood. Here, we set out to elucidate the mechanistic basis for the ion selectivity of human TPC2 (hTPC2) and the molecular mechanism of ligand-induced channel activation by the lipid PI(3,5)P2. We performed all-atom in silico electrophysiology simulations to study Na+ and Ca2+ permeation across full-length hTPC2 on the timescale of ion conduction and investigated the conformational changes induced by the presence or absence of bound PI(3,5)P2. Our findings reveal that hTPC2 adopts distinct conformations depending on the presence of PI(3,5)P2 and elucidate the allosteric transition pathways between these structures. Additionally, we examined the permeation mechanism, solvation states, and binding sites of ions during ion permeation through the pore. The results of our simulations explain the experimental observation that hTPC2 is more selective for Na+ over Ca2+ ions in the presence of PI(3,5)P2via a multilayer selectivity mechanism. Importantly, mutations in the selectivity filter region of hTPC2 maintain cation conduction but change the ion selectivity of hTPC2 drastically.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"157 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313506","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-pore channels (TPCs) are twofold symmetric endolysosomal cation channels forming important drug targets, especially for antiviral drugs. They are activated by calcium, ligand binding, and membrane voltage, and to date, they are the only ion channels shown to alter their ion selectivity depending on the type of bound ligand. However, despite their importance, ligand activation of TPCs and the molecular mechanisms underlying their ion selectivity are still poorly understood. Here, we set out to elucidate the mechanistic basis for the ion selectivity of human TPC2 (hTPC2) and the molecular mechanism of ligand-induced channel activation by the lipid PI(3,5)P2. We performed all-atom in silico electrophysiology simulations to study Na+ and Ca2+ permeation across full-length hTPC2 on the timescale of ion conduction and investigated the conformational changes induced by the presence or absence of bound PI(3,5)P2. Our findings reveal that hTPC2 adopts distinct conformations depending on the presence of PI(3,5)P2 and elucidate the allosteric transition pathways between these structures. Additionally, we examined the permeation mechanism, solvation states, and binding sites of ions during ion permeation through the pore. The results of our simulations explain the experimental observation that hTPC2 is more selective for Na+ over Ca2+ ions in the presence of PI(3,5)P2via a multilayer selectivity mechanism. Importantly, mutations in the selectivity filter region of hTPC2 maintain cation conduction but change the ion selectivity of hTPC2 drastically.
期刊介绍:
General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization.
The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.