AI-Driven Analysis of Drug Marketing Efficiency: Unveiling FDA Approval to Market Release Dynamics.

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Yoshiyasu Takefuji
{"title":"AI-Driven Analysis of Drug Marketing Efficiency: Unveiling FDA Approval to Market Release Dynamics.","authors":"Yoshiyasu Takefuji","doi":"10.1208/s12248-025-01039-4","DOIUrl":null,"url":null,"abstract":"<p><p>This paper explores a novel approach using generative AI to enhance drug marketing strategies in the US pharmaceutical sector. By leveraging an official dataset sourced from the US government, the AI generates Python code to analyze the time interval between FDA approval dates and market release dates. The analysis identifies 370 manufacturers who achieved \"zero-day\" marketing-referring to drugs marketed immediately upon FDA approval-and 174 manufacturers who marketed their products within less than seven days of approval. Notably, 947 drug products were found to have been marketed prior to FDA approval, raising significant regulatory and ethical concerns that necessitate further discussion. The findings indicate that 174 drug manufacturers have the potential to optimize their marketing strategies to achieve zero-day timelines, prompting an examination of the feasibility of such acceleration within the current regulatory framework and its implications for industry practices. Additionally, this paper discusses the broader impact of AI-driven strategies in the pharmaceutical sector, highlighting their potential to not only enhance marketing speed but also improve aspects such as compliance and decision-making efficiency. Furthermore, a tutorial on implementing generative AI is provided, detailing how it can be utilized to achieve marketing objectives through interactive conversations with the AI. This practical application demonstrates the technology's capabilities using real dataset analysis and reveals significant findings that could inform future strategies within the industry. The research objectives and their broader implications underscore the need for ongoing dialogue about the ethical and regulatory dimensions of AI in pharmaceutical marketing.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 2","pages":"48"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01039-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a novel approach using generative AI to enhance drug marketing strategies in the US pharmaceutical sector. By leveraging an official dataset sourced from the US government, the AI generates Python code to analyze the time interval between FDA approval dates and market release dates. The analysis identifies 370 manufacturers who achieved "zero-day" marketing-referring to drugs marketed immediately upon FDA approval-and 174 manufacturers who marketed their products within less than seven days of approval. Notably, 947 drug products were found to have been marketed prior to FDA approval, raising significant regulatory and ethical concerns that necessitate further discussion. The findings indicate that 174 drug manufacturers have the potential to optimize their marketing strategies to achieve zero-day timelines, prompting an examination of the feasibility of such acceleration within the current regulatory framework and its implications for industry practices. Additionally, this paper discusses the broader impact of AI-driven strategies in the pharmaceutical sector, highlighting their potential to not only enhance marketing speed but also improve aspects such as compliance and decision-making efficiency. Furthermore, a tutorial on implementing generative AI is provided, detailing how it can be utilized to achieve marketing objectives through interactive conversations with the AI. This practical application demonstrates the technology's capabilities using real dataset analysis and reveals significant findings that could inform future strategies within the industry. The research objectives and their broader implications underscore the need for ongoing dialogue about the ethical and regulatory dimensions of AI in pharmaceutical marketing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信