Mesenchymal Stem Cell Exosome and Fibrin Sealant Composite Enhances Rabbit Anterior Cruciate Ligament Repair.

IF 4.2 1区 医学 Q1 ORTHOPEDICS
American Journal of Sports Medicine Pub Date : 2025-03-01 Epub Date: 2025-02-21 DOI:10.1177/03635465241313142
Keng Lin Wong, Kristeen Ye Wen Teo, Gin Way Law, Shipin Zhang, Tianqi Wang, Hassan Afizah, Chee Jian Pua, Barry Wei Loong Tan, James Hoi Po Hui, Wei Seong Toh
{"title":"Mesenchymal Stem Cell Exosome and Fibrin Sealant Composite Enhances Rabbit Anterior Cruciate Ligament Repair.","authors":"Keng Lin Wong, Kristeen Ye Wen Teo, Gin Way Law, Shipin Zhang, Tianqi Wang, Hassan Afizah, Chee Jian Pua, Barry Wei Loong Tan, James Hoi Po Hui, Wei Seong Toh","doi":"10.1177/03635465241313142","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The anterior cruciate ligament (ACL) fails to heal after rupture, leading to joint instability and an increased risk of osteoarthritis. Mesenchymal stem/stromal cell (MSC) exosomes have reported wide-ranging therapeutic efficacy; however, their potential for augmenting ACL repair remains to be investigated.</p><p><strong>Purpose: </strong>To evaluate the use of MSC exosomes with fibrin sealant on biological augmentation of ACL healing after suture repair and their effects on ACL fibroblast functions.</p><p><strong>Study design: </strong>Controlled laboratory study.</p><p><strong>Methods: </strong>Twelve rabbit knees underwent ACL transection and suture repair. MSC exosome and fibrin composite (Exosome+Fibrin) or fibrin (Fibrin) alone was used to supplement the suture repair in 6 knees. ACL repair was assessed by magnetic resonance imaging at 6 and 12 weeks postoperatively and by histologic and immunohistochemical analyses at 12 weeks. To investigate the mechanisms through which MSC exosomes augment ACL repair, metabolic activity, proliferation, migration, and matrix synthesis assays were performed using the primary ACL fibroblasts. RNA sequencing was also performed to assess global gene expression changes in exosome-treated ACL fibroblasts.</p><p><strong>Results: </strong>Based on magnetic resonance imaging findings, 5 of 6 Exosome+Fibrin-treated ACLs were completely or partially healed, as opposed to 5 of 6 Fibrin-treated ACLs appearing torn at 6 and 12 weeks postoperatively. Additionally, 4 of 6 Exosome+Fibrin-treated ACLs were isointense, as compared with 5 of 6 Fibrin-treated ACLs that were hyperintense, indicating improved remodeling and maturation of the repaired ACLs with Exosome+Fibrin treatment. Histologically, Exosome+Fibrin-treated ACLs showed more organized collagen fibers and abundant collagen deposition, with a high amount of collagen I and relatively lower amount of collagen III, which are consistent with the matrix structure and composition of the normal ACL. Cell culture studies using ACL fibroblasts showed that MSC exosomes enhanced proliferation, migration, and collagen synthesis and deposition, which are cellular processes relevant to ACL repair. Further gene set enrichment analysis revealed key pathways mediated by MSC exosomes in enhancing proliferation and migration while reducing matrix degradation of ACL fibroblasts.</p><p><strong>Conclusion: </strong>The combination of MSC exosomes and fibrin sealant (Exosome+Fibrin) applied to a suture repair enhanced the morphologic and histologic properties of the ACL in a rabbit model, and these improvements could be attributed to the augmented functions of ACL fibroblasts with exosome treatment.</p><p><strong>Clinical relevance: </strong>This work supports the use of MSC exosomes in biological augmentation of ACL healing after suture repair.</p>","PeriodicalId":55528,"journal":{"name":"American Journal of Sports Medicine","volume":" ","pages":"871-884"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03635465241313142","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The anterior cruciate ligament (ACL) fails to heal after rupture, leading to joint instability and an increased risk of osteoarthritis. Mesenchymal stem/stromal cell (MSC) exosomes have reported wide-ranging therapeutic efficacy; however, their potential for augmenting ACL repair remains to be investigated.

Purpose: To evaluate the use of MSC exosomes with fibrin sealant on biological augmentation of ACL healing after suture repair and their effects on ACL fibroblast functions.

Study design: Controlled laboratory study.

Methods: Twelve rabbit knees underwent ACL transection and suture repair. MSC exosome and fibrin composite (Exosome+Fibrin) or fibrin (Fibrin) alone was used to supplement the suture repair in 6 knees. ACL repair was assessed by magnetic resonance imaging at 6 and 12 weeks postoperatively and by histologic and immunohistochemical analyses at 12 weeks. To investigate the mechanisms through which MSC exosomes augment ACL repair, metabolic activity, proliferation, migration, and matrix synthesis assays were performed using the primary ACL fibroblasts. RNA sequencing was also performed to assess global gene expression changes in exosome-treated ACL fibroblasts.

Results: Based on magnetic resonance imaging findings, 5 of 6 Exosome+Fibrin-treated ACLs were completely or partially healed, as opposed to 5 of 6 Fibrin-treated ACLs appearing torn at 6 and 12 weeks postoperatively. Additionally, 4 of 6 Exosome+Fibrin-treated ACLs were isointense, as compared with 5 of 6 Fibrin-treated ACLs that were hyperintense, indicating improved remodeling and maturation of the repaired ACLs with Exosome+Fibrin treatment. Histologically, Exosome+Fibrin-treated ACLs showed more organized collagen fibers and abundant collagen deposition, with a high amount of collagen I and relatively lower amount of collagen III, which are consistent with the matrix structure and composition of the normal ACL. Cell culture studies using ACL fibroblasts showed that MSC exosomes enhanced proliferation, migration, and collagen synthesis and deposition, which are cellular processes relevant to ACL repair. Further gene set enrichment analysis revealed key pathways mediated by MSC exosomes in enhancing proliferation and migration while reducing matrix degradation of ACL fibroblasts.

Conclusion: The combination of MSC exosomes and fibrin sealant (Exosome+Fibrin) applied to a suture repair enhanced the morphologic and histologic properties of the ACL in a rabbit model, and these improvements could be attributed to the augmented functions of ACL fibroblasts with exosome treatment.

Clinical relevance: This work supports the use of MSC exosomes in biological augmentation of ACL healing after suture repair.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
12.50%
发文量
425
审稿时长
3 months
期刊介绍: An invaluable resource for the orthopaedic sports medicine community, _The American Journal of Sports Medicine_ is a peer-reviewed scientific journal, first published in 1972. It is the official publication of the [American Orthopaedic Society for Sports Medicine (AOSSM)](http://www.sportsmed.org/)! The journal acts as an important forum for independent orthopaedic sports medicine research and education, allowing clinical practitioners the ability to make decisions based on sound scientific information. This journal is a must-read for: * Orthopaedic Surgeons and Specialists * Sports Medicine Physicians * Physiatrists * Athletic Trainers * Team Physicians * And Physical Therapists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信