Phylogenomic resolution of marine to freshwater dinoflagellate transitions.

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Mahara Mtawali, Elizabeth C Cooney, Jayd Adams, Joshua Jin, Corey C Holt, Patrick J Keeling
{"title":"Phylogenomic resolution of marine to freshwater dinoflagellate transitions.","authors":"Mahara Mtawali, Elizabeth C Cooney, Jayd Adams, Joshua Jin, Corey C Holt, Patrick J Keeling","doi":"10.1093/ismejo/wraf031","DOIUrl":null,"url":null,"abstract":"<p><p>Dinoflagellates are an abundant and diverse group of protists that inhabit aquatic environments worldwide. They are characterized by numerous unique cellular and molecular traits, and have adapted to an unusually broad range of life strategies, including phototrophy, heterotrophy, parasitism, and all combinations of these. For most microbial groups, transitions from marine to freshwater environments are relatively rare, as changes in salinity are thought to lead to significant osmotic challenges that are difficult for the cell to overcome. Recent work has shown that dinoflagellates have overcome these challenges relatively often in evolutionary time, but because this is mostly based on single gene trees with low overall support, many of the relationships between freshwater and marine groups remain unresolved. Normally, phylogenomics could clarify such conclusions, but despite the recent surge in data, virtually no freshwater dinoflagellates have been characterized at the genome-wide level. Here, we generated 30 transcriptomes from cultures and single cells collected from freshwater environments to infer a robustly supported phylogenomic tree from 217 conserved genes, resolving at least seven transitions to freshwater in dinoflagellates. Mapping the distribution of ASVs from freshwater environmental samples onto this tree confirms these groups and identifies additional lineages where freshwater dinoflagellates likely remain unsampled. We also sampled two species of Durinskia, a genus of \"dinotoms\" with both marine and freshwater lineages containing Nitzschia-derived tertiary plastids. Ribosomal RNA phylogenies show that the host cells are closely related, but their endosymbionts are likely descended from two distantly-related freshwater Nitzschia species that were acquired in parallel and relatively recently.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf031","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dinoflagellates are an abundant and diverse group of protists that inhabit aquatic environments worldwide. They are characterized by numerous unique cellular and molecular traits, and have adapted to an unusually broad range of life strategies, including phototrophy, heterotrophy, parasitism, and all combinations of these. For most microbial groups, transitions from marine to freshwater environments are relatively rare, as changes in salinity are thought to lead to significant osmotic challenges that are difficult for the cell to overcome. Recent work has shown that dinoflagellates have overcome these challenges relatively often in evolutionary time, but because this is mostly based on single gene trees with low overall support, many of the relationships between freshwater and marine groups remain unresolved. Normally, phylogenomics could clarify such conclusions, but despite the recent surge in data, virtually no freshwater dinoflagellates have been characterized at the genome-wide level. Here, we generated 30 transcriptomes from cultures and single cells collected from freshwater environments to infer a robustly supported phylogenomic tree from 217 conserved genes, resolving at least seven transitions to freshwater in dinoflagellates. Mapping the distribution of ASVs from freshwater environmental samples onto this tree confirms these groups and identifies additional lineages where freshwater dinoflagellates likely remain unsampled. We also sampled two species of Durinskia, a genus of "dinotoms" with both marine and freshwater lineages containing Nitzschia-derived tertiary plastids. Ribosomal RNA phylogenies show that the host cells are closely related, but their endosymbionts are likely descended from two distantly-related freshwater Nitzschia species that were acquired in parallel and relatively recently.

海洋到淡水鞭毛虫转变的系统发育分析。
鞭毛藻是一种丰富多样的原生生物,栖息在世界各地的水生环境中。它们具有许多独特的细胞和分子特征,并适应了异常广泛的生活策略,包括光养、异养、寄生以及这些策略的所有组合。对于大多数微生物群来说,从海洋到淡水环境的转变相对罕见,因为盐度的变化被认为会导致细胞难以克服的重大渗透挑战。最近的研究表明,鞭毛藻在进化过程中相对频繁地克服了这些挑战,但由于这主要是基于整体支持度较低的单基因树,淡水和海洋群体之间的许多关系仍未得到解决。通常,系统基因组学可以澄清这样的结论,但是尽管最近数据激增,实际上没有淡水鞭毛藻在全基因组水平上被表征。在这里,我们从淡水环境中收集的培养物和单细胞中生成了30个转录组,从217个保守基因中推断出一个强有力的支持系统基因组树,解决了鞭毛藻中至少7个向淡水的转变。将淡水环境样本中的asv分布映射到这棵树上,确认了这些群体,并确定了淡水鞭毛虫可能尚未采样的其他谱系。我们还采样了两种Durinskia,这是一种“恐龙”属,具有海洋和淡水血统,含有尼氏菌衍生的第三纪质体。核糖体RNA系统发育表明,宿主细胞是密切相关的,但它们的内共生体可能是两个相近的淡水尼氏菌物种的后代,这两个物种是在相对较近的时间内平行获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信