Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruidi Zhu, Chengwei Wu, Jinyin Zha, Shaoyong Lu, Jian Zhang
{"title":"Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.","authors":"Ruidi Zhu, Chengwei Wu, Jinyin Zha, Shaoyong Lu, Jian Zhang","doi":"10.1039/d4cb00282b","DOIUrl":null,"url":null,"abstract":"<p><p>Allosteric regulation is a fundamental mechanism in enzyme function, enabling dynamic modulation of activity through ligand binding at sites distal to the active site. Allosteric modulators have gained significant attention due to their unique advantages, including enhanced specificity, reduced off-target effects, and the potential for synergistic interaction with orthosteric agents. However, the inherent complexity of allosteric mechanisms has posed challenges to the systematic discovery and design of allosteric modulators. This review discusses recent advancements in computational methodologies for identifying and characterizing allosteric sites in enzymes, emphasizing techniques such as molecular dynamics (MD) simulations, enhanced sampling methods, normal mode analysis (NMA), evolutionary conservation analysis, and machine learning (ML) approaches. Advanced tools like PASSer, AlloReverse, and AlphaFold have further enhanced the understanding of allosteric mechanisms and facilitated the design of selective allosteric modulators. Case studies on enzymes such as Sirtuin 6 (SIRT6) and MAPK/ERK kinase (MEK) demonstrate the practical applications of these approaches in drug discovery. By integrating computational predictions with experimental validation, this review highlights the transformative potential of computational strategies in advancing allosteric drug discovery, offering innovative opportunities to regulate enzyme activity for therapeutic benefits.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00282b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allosteric regulation is a fundamental mechanism in enzyme function, enabling dynamic modulation of activity through ligand binding at sites distal to the active site. Allosteric modulators have gained significant attention due to their unique advantages, including enhanced specificity, reduced off-target effects, and the potential for synergistic interaction with orthosteric agents. However, the inherent complexity of allosteric mechanisms has posed challenges to the systematic discovery and design of allosteric modulators. This review discusses recent advancements in computational methodologies for identifying and characterizing allosteric sites in enzymes, emphasizing techniques such as molecular dynamics (MD) simulations, enhanced sampling methods, normal mode analysis (NMA), evolutionary conservation analysis, and machine learning (ML) approaches. Advanced tools like PASSer, AlloReverse, and AlphaFold have further enhanced the understanding of allosteric mechanisms and facilitated the design of selective allosteric modulators. Case studies on enzymes such as Sirtuin 6 (SIRT6) and MAPK/ERK kinase (MEK) demonstrate the practical applications of these approaches in drug discovery. By integrating computational predictions with experimental validation, this review highlights the transformative potential of computational strategies in advancing allosteric drug discovery, offering innovative opportunities to regulate enzyme activity for therapeutic benefits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信