{"title":"Enhanced in silico QSAR-based screening of butyrylcholinesterase inhibitors using multi-feature selection and machine learning.","authors":"D Sharmistha, M Prabha, R R Siva Kiran, H Ashoka","doi":"10.1080/1062936X.2025.2466020","DOIUrl":null,"url":null,"abstract":"<p><p>Butyrylcholinesterase inhibition offers one of the formulated solutions to tackle the aggravating symptoms of dementia that downgrades to cholinergic neuronal loss in Alzheimer's disease. We developed a QSAR model to facilitate the identification of effective butyrylcholinesterase inhibitors. The model employs multi-feature selection and feature learning, improving the in silico screening efficiency and accelerating drug discovery efforts. This study aims to integrate Human Intestinal Absorption (HIA) values of butyrylcholinesterase (BChE) target inhibitors and their 50% inhibitory concentration (IC<sub>50</sub>) with machine learning tools. The model was developed using chemical descriptors in combination with supervised machine learning classification algorithms. Random Forest Classifier algorithm proved to be the ultimate best fit for classification model metrics including log loss probability (0.04225), accuracy score (98.88%) and Matthew's correlation coefficient (0.98). Furthermore, a subset of the active dataset was used to study the regression based on HIA values using multi-feature selection and feature learning. The models were validated using precision, recall and F1 score for regression modelling. After integrating HIA data with existing machine learning algorithms, we observed a significant reduction of 89.63% in the number of inhibitors. The findings provide valuable pharmacological insights that can help in future design of drug development schemes different from conventional methods.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1-21"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2466020","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Butyrylcholinesterase inhibition offers one of the formulated solutions to tackle the aggravating symptoms of dementia that downgrades to cholinergic neuronal loss in Alzheimer's disease. We developed a QSAR model to facilitate the identification of effective butyrylcholinesterase inhibitors. The model employs multi-feature selection and feature learning, improving the in silico screening efficiency and accelerating drug discovery efforts. This study aims to integrate Human Intestinal Absorption (HIA) values of butyrylcholinesterase (BChE) target inhibitors and their 50% inhibitory concentration (IC50) with machine learning tools. The model was developed using chemical descriptors in combination with supervised machine learning classification algorithms. Random Forest Classifier algorithm proved to be the ultimate best fit for classification model metrics including log loss probability (0.04225), accuracy score (98.88%) and Matthew's correlation coefficient (0.98). Furthermore, a subset of the active dataset was used to study the regression based on HIA values using multi-feature selection and feature learning. The models were validated using precision, recall and F1 score for regression modelling. After integrating HIA data with existing machine learning algorithms, we observed a significant reduction of 89.63% in the number of inhibitors. The findings provide valuable pharmacological insights that can help in future design of drug development schemes different from conventional methods.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.