Enhanced in silico QSAR-based screening of butyrylcholinesterase inhibitors using multi-feature selection and machine learning.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
D Sharmistha, M Prabha, R R Siva Kiran, H Ashoka
{"title":"Enhanced in silico QSAR-based screening of butyrylcholinesterase inhibitors using multi-feature selection and machine learning.","authors":"D Sharmistha, M Prabha, R R Siva Kiran, H Ashoka","doi":"10.1080/1062936X.2025.2466020","DOIUrl":null,"url":null,"abstract":"<p><p>Butyrylcholinesterase inhibition offers one of the formulated solutions to tackle the aggravating symptoms of dementia that downgrades to cholinergic neuronal loss in Alzheimer's disease. We developed a QSAR model to facilitate the identification of effective butyrylcholinesterase inhibitors. The model employs multi-feature selection and feature learning, improving the in silico screening efficiency and accelerating drug discovery efforts. This study aims to integrate Human Intestinal Absorption (HIA) values of butyrylcholinesterase (BChE) target inhibitors and their 50% inhibitory concentration (IC<sub>50</sub>) with machine learning tools. The model was developed using chemical descriptors in combination with supervised machine learning classification algorithms. Random Forest Classifier algorithm proved to be the ultimate best fit for classification model metrics including log loss probability (0.04225), accuracy score (98.88%) and Matthew's correlation coefficient (0.98). Furthermore, a subset of the active dataset was used to study the regression based on HIA values using multi-feature selection and feature learning. The models were validated using precision, recall and F1 score for regression modelling. After integrating HIA data with existing machine learning algorithms, we observed a significant reduction of 89.63% in the number of inhibitors. The findings provide valuable pharmacological insights that can help in future design of drug development schemes different from conventional methods.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1-21"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2466020","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Butyrylcholinesterase inhibition offers one of the formulated solutions to tackle the aggravating symptoms of dementia that downgrades to cholinergic neuronal loss in Alzheimer's disease. We developed a QSAR model to facilitate the identification of effective butyrylcholinesterase inhibitors. The model employs multi-feature selection and feature learning, improving the in silico screening efficiency and accelerating drug discovery efforts. This study aims to integrate Human Intestinal Absorption (HIA) values of butyrylcholinesterase (BChE) target inhibitors and their 50% inhibitory concentration (IC50) with machine learning tools. The model was developed using chemical descriptors in combination with supervised machine learning classification algorithms. Random Forest Classifier algorithm proved to be the ultimate best fit for classification model metrics including log loss probability (0.04225), accuracy score (98.88%) and Matthew's correlation coefficient (0.98). Furthermore, a subset of the active dataset was used to study the regression based on HIA values using multi-feature selection and feature learning. The models were validated using precision, recall and F1 score for regression modelling. After integrating HIA data with existing machine learning algorithms, we observed a significant reduction of 89.63% in the number of inhibitors. The findings provide valuable pharmacological insights that can help in future design of drug development schemes different from conventional methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信