{"title":"Evolocumab Reduces Oxidative Stress and Lipid Peroxidation in Obese Zucker Rats.","authors":"Martina Cebova, Radoslava Bulkova, Olga Pechanova","doi":"10.3390/pathophysiology32010005","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Evolocumab inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) binding to low-density lipoprotein (LDL) receptors, thus allowing more LDL receptors to remove LDL cholesterol from the blood. We aimed to determine the effects of evolocumab on the plasma lipid profile, reactive oxygen species (ROS), and nitric oxide (NO) generation in the heart of adult male obese Zucker rats. <b>Methods</b>: The rats were divided into lean and obese controls and obese rats treated with evolocumab subcutaneously at a dose of 10 mg/kg every two weeks. After 6 weeks, the lipid profile was determined in the plasma, and NO synthase (NOS) activity, thiobarbituric acid reactive substance (TBARS), conjugated diene (CD) concentration, and protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear factor kappaB (NF-κB), endothelial NOS (eNOS), and phosphorylated eNOS (peNOS) were measured in the heart. <b>Results</b>: Evolocumab treatment did not reduce body weight, relative heart weight, or systolic blood pressure in obese Zucker rats. Evolocumab treatment, however, reduced plasma LDL levels, TBARS, and CD concentrations along with decreasing expression of NADPH oxidase and NF-kappaB proteins in the heart. On the other hand, evolocumab had no effect on NOS activity or eNOS and peNOS protein expression. <b>Conclusions</b>: Besides its lipid-lowering effect, evolocumab may exert antioxidant properties and protect cardiomyocytes from lipid peroxidation while not affecting NO production.</p>","PeriodicalId":19852,"journal":{"name":"Pathophysiology","volume":"32 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pathophysiology32010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Evolocumab inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) binding to low-density lipoprotein (LDL) receptors, thus allowing more LDL receptors to remove LDL cholesterol from the blood. We aimed to determine the effects of evolocumab on the plasma lipid profile, reactive oxygen species (ROS), and nitric oxide (NO) generation in the heart of adult male obese Zucker rats. Methods: The rats were divided into lean and obese controls and obese rats treated with evolocumab subcutaneously at a dose of 10 mg/kg every two weeks. After 6 weeks, the lipid profile was determined in the plasma, and NO synthase (NOS) activity, thiobarbituric acid reactive substance (TBARS), conjugated diene (CD) concentration, and protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear factor kappaB (NF-κB), endothelial NOS (eNOS), and phosphorylated eNOS (peNOS) were measured in the heart. Results: Evolocumab treatment did not reduce body weight, relative heart weight, or systolic blood pressure in obese Zucker rats. Evolocumab treatment, however, reduced plasma LDL levels, TBARS, and CD concentrations along with decreasing expression of NADPH oxidase and NF-kappaB proteins in the heart. On the other hand, evolocumab had no effect on NOS activity or eNOS and peNOS protein expression. Conclusions: Besides its lipid-lowering effect, evolocumab may exert antioxidant properties and protect cardiomyocytes from lipid peroxidation while not affecting NO production.
期刊介绍:
Pathophysiology is an international journal which publishes papers in English which address the etiology, development, and elimination of pathological processes. Contributions on the basic mechanisms underlying these processes, model systems and interdisciplinary approaches are strongly encouraged.