Targeting efflux pumps prevents the multi-step evolution of high-level resistance to fluoroquinolone in Pseudomonas aeruginosa.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
Microbiology spectrum Pub Date : 2025-04-01 Epub Date: 2025-02-21 DOI:10.1128/spectrum.02981-24
Xiao-Quan Yu, Hao Yang, Han-Zhong Feng, Jun Hou, Jun-Qiang Tian, Shao-Min Niu, Chong-Ge You, Xuan-Yu Tao, Si-Ping Zhang, Zhi-Ping Wang, Yong-Xing He
{"title":"Targeting efflux pumps prevents the multi-step evolution of high-level resistance to fluoroquinolone in <i>Pseudomonas aeruginosa</i>.","authors":"Xiao-Quan Yu, Hao Yang, Han-Zhong Feng, Jun Hou, Jun-Qiang Tian, Shao-Min Niu, Chong-Ge You, Xuan-Yu Tao, Si-Ping Zhang, Zhi-Ping Wang, Yong-Xing He","doi":"10.1128/spectrum.02981-24","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is emerging as a significant global health crisis, necessitating the urgent development of novel antibiotics or alternative therapies. Although it is recognized that bacteria require multiple mutations to develop resistance levels exceeding the mutant prevention concentration, the specific mutation combinations conferring high resistance have been largely undefined. Here, we investigated the multi-step evolution of fluoroquinolone resistance in <i>Pseudomonas aeruginosa</i> through experimental evolution and whole-genome sequencing coupled with proteomic approaches. We discovered that in low-dose and high-dose experimental evolution scenarios, combinations of mutations in the negative regulators of efflux pumps (<i>nfxB/mexR</i>) and DNA gyrases (<i>gyrA/gyrB</i>) contributed to the high-level resistance and some of these combinations were also prevalent in clinical isolates of <i>P. aeruginosa</i>. Notably, the selected <i>nfxB</i> mutation, which resulted in the overexpression of the MexCD-OprJ efflux pump, also exhibited collateral sensitivity to aminoglycosides and enhanced antibiotic tolerance. It was further revealed that the efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) could effectively prevent evolution to high-level resistance for both laboratory and clinical <i>P. aeruginosa</i> strains. Our work highlights the critical role of efflux pump repressor-related mutations in the evolution of high-level antibiotic resistance and demonstrates the potential of targeting these mutations to impede the evolution toward high-level resistance.IMPORTANCEIn this study, we examined the stepwise evolution of fluoroquinolone resistance in <i>Pseudomonas aeruginosa</i> using experimental evolution, whole-genome sequencing, and proteomic analyses. Our findings revealed that under both low-dose and high-dose conditions, mutations in efflux pump regulators (<i>nfxB</i>/<i>mexR</i>) and DNA gyrase genes (<i>gyrA</i>/<i>gyrB</i>) synergistically contributed to high-level resistance. These mutation combinations were not only observed in experimental settings but also detected in clinical isolates of <i>P. aeruginosa</i>. This work underscores the pivotal role of efflux pump repressor-related mutations in the progression to high-level antibiotic resistance. It also highlights the promise of targeting efflux pumps as a strategy to prevent the multi-step evolution of resistance in <i>P. aeruginosa</i>.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0298124"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02981-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance is emerging as a significant global health crisis, necessitating the urgent development of novel antibiotics or alternative therapies. Although it is recognized that bacteria require multiple mutations to develop resistance levels exceeding the mutant prevention concentration, the specific mutation combinations conferring high resistance have been largely undefined. Here, we investigated the multi-step evolution of fluoroquinolone resistance in Pseudomonas aeruginosa through experimental evolution and whole-genome sequencing coupled with proteomic approaches. We discovered that in low-dose and high-dose experimental evolution scenarios, combinations of mutations in the negative regulators of efflux pumps (nfxB/mexR) and DNA gyrases (gyrA/gyrB) contributed to the high-level resistance and some of these combinations were also prevalent in clinical isolates of P. aeruginosa. Notably, the selected nfxB mutation, which resulted in the overexpression of the MexCD-OprJ efflux pump, also exhibited collateral sensitivity to aminoglycosides and enhanced antibiotic tolerance. It was further revealed that the efflux pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) could effectively prevent evolution to high-level resistance for both laboratory and clinical P. aeruginosa strains. Our work highlights the critical role of efflux pump repressor-related mutations in the evolution of high-level antibiotic resistance and demonstrates the potential of targeting these mutations to impede the evolution toward high-level resistance.IMPORTANCEIn this study, we examined the stepwise evolution of fluoroquinolone resistance in Pseudomonas aeruginosa using experimental evolution, whole-genome sequencing, and proteomic analyses. Our findings revealed that under both low-dose and high-dose conditions, mutations in efflux pump regulators (nfxB/mexR) and DNA gyrase genes (gyrA/gyrB) synergistically contributed to high-level resistance. These mutation combinations were not only observed in experimental settings but also detected in clinical isolates of P. aeruginosa. This work underscores the pivotal role of efflux pump repressor-related mutations in the progression to high-level antibiotic resistance. It also highlights the promise of targeting efflux pumps as a strategy to prevent the multi-step evolution of resistance in P. aeruginosa.

靶向外排泵可防止铜绿假单胞菌对氟喹诺酮类药物产生多级耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信