Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level.

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eldi Sulaj, Felix L Sandell, Linda Schwaigerlehner, Gorji Marzban, Juliane C Dohm, Renate Kunert
{"title":"Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level.","authors":"Eldi Sulaj, Felix L Sandell, Linda Schwaigerlehner, Gorji Marzban, Juliane C Dohm, Renate Kunert","doi":"10.3390/proteomes13010009","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. <b>Methods</b>: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. <b>Results</b>: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). <b>Conclusions</b>: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes13010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.

磷酸化蛋白组水平下CHO-K1细胞系重组2G12和353/11单抗生产的系统生物学研究
背景:中国仓鼠卵巢(CHO)细胞被广泛应用于制药工业,用于生产复杂的蛋白质,主要是因为它们能够进行类似人类的翻译后修饰。然而,在单克隆抗体产生细胞系、CHO宿主细胞系内或受外部因素影响,高质量蛋白质生产的效率可能会有很大差异。方法:为了研究这种变异背后的复杂细胞机制,在对产生两种不同抗体的重组CHO细胞进行磷酸化肽富集和tunicamycin处理实验后,使用无标记定量液相色谱进行了磷酸化蛋白质组学分析。使用MaxQuant和Perseus进行数据分析,我们鉴定了2109个蛋白,并定量了4059个磷酸位点。结果:在产生难以产生的2G12单抗的细胞的核蛋白中观察到显著的磷酸化动力学。提示2G12的表达通过磷酸化丰度的增减调控核通路。此外,已经检测到与tunicamycin治疗相关的磷酸化模式的大量变化。除其他磷酸化蛋白外,TM处理影响真核延伸因子2激酶(Eef2k)。结论:参与细胞过程的关键蛋白磷酸化景观的改变突出了应激诱导细胞反应背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信