Changes in the dynamic characteristics of G-protein can alter the immune-protection efficacy of rabies virus vaccine.

IF 4 2区 医学 Q2 VIROLOGY
Chang-Xu Chen, Xi Wang, Wen Su, Yuan Tian, Yu Gao, Dong-Lan Liu, Hong Xiang, Bo-Chuan Liu, Jin-Li Shi, Yang Zhang, Dong Shen, Wen-Zhi He, Li Yang, Chao Hong, Fan Wu, Lei-Tai Shi, Yi-Na Cun, Jian Zhou
{"title":"Changes in the dynamic characteristics of G-protein can alter the immune-protection efficacy of rabies virus vaccine.","authors":"Chang-Xu Chen, Xi Wang, Wen Su, Yuan Tian, Yu Gao, Dong-Lan Liu, Hong Xiang, Bo-Chuan Liu, Jin-Li Shi, Yang Zhang, Dong Shen, Wen-Zhi He, Li Yang, Chao Hong, Fan Wu, Lei-Tai Shi, Yi-Na Cun, Jian Zhou","doi":"10.1128/jvi.01954-24","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of the G-protein is influenced by N-linked glycosylation, which serves as the sole immunogen of the rabies virus vaccine. However, achieving satisfactory immune-protection efficacy remains challenging, owing to the heterogeneous glycosylation of G-proteins. Within molecular dynamics, examining the impact of N-glycan heterogeneity on the structural characteristics of G-proteins provides insights into the relationship between antigens and the efficacy of rabies virus vaccines. Glycosylation is regulated by host cells. In rabies virus cultured in Vero cells (VRV), all N-glycosylation sites of the G-protein underwent modification. In contrast, rabies virus G-protein cultured in KMB17 cells (human diploid cell vaccine [HDCV]) was only modified by N-glycans at amino acid positions 247 and 319. Furthermore, treatment of VRV with de-glycosylation significantly improved its immune-protective efficacy, whereas de-glycosylation did not alter the immune-protective efficacy of HDCV. To support the impact of glycosylation on VRV efficacy, the structures and dynamics of G-proteins were analyzed using GROMACS. Specifically, the hydrophobicity, flexibility, and radius of gyration of the G-protein trimer in VRV were significantly altered by excessive hydrogen bonds formed by the three-branched hybrid glycan at the aa 319 site. These changes increase the instability of the G-protein trimer and may lead to a decrease in vaccine protective efficacy. Ultimately, we determined that N-glycan heterogeneity affects the immune-protection effect of antigen proteins by altering their dynamic characteristics, enhancing our understanding of the correlation between antigen structural characteristics and efficacy.</p><p><strong>Importance: </strong>N-glycosylation of rabies virus glycoprotein dynamically regulates protein folding, stability, and antigenicity. Therefore, regulation of N-glycan modification is key to improving vaccine stability and protective efficacy. How the type and modification sites of N-glycans affect the protective efficacy of rabies vaccines remains unclear. Our research indicates that there are differences in the protective efficacy of rabies virus G-proteins modified with different N-glycans. Moreover, the modification of the three-branched hybrid glycan at the aa 319 site of G-protein significantly altered the hydrophobicity, flexibility, and radius, and increased its trimeric antigen instability through molecular dynamics demonstrations. These findings update the current understanding of the impact of glycans on vaccine antigenicity and develop a system to evaluate the stability of antigen glycoproteins based on molecular dynamics.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0195424"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01954-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of the G-protein is influenced by N-linked glycosylation, which serves as the sole immunogen of the rabies virus vaccine. However, achieving satisfactory immune-protection efficacy remains challenging, owing to the heterogeneous glycosylation of G-proteins. Within molecular dynamics, examining the impact of N-glycan heterogeneity on the structural characteristics of G-proteins provides insights into the relationship between antigens and the efficacy of rabies virus vaccines. Glycosylation is regulated by host cells. In rabies virus cultured in Vero cells (VRV), all N-glycosylation sites of the G-protein underwent modification. In contrast, rabies virus G-protein cultured in KMB17 cells (human diploid cell vaccine [HDCV]) was only modified by N-glycans at amino acid positions 247 and 319. Furthermore, treatment of VRV with de-glycosylation significantly improved its immune-protective efficacy, whereas de-glycosylation did not alter the immune-protective efficacy of HDCV. To support the impact of glycosylation on VRV efficacy, the structures and dynamics of G-proteins were analyzed using GROMACS. Specifically, the hydrophobicity, flexibility, and radius of gyration of the G-protein trimer in VRV were significantly altered by excessive hydrogen bonds formed by the three-branched hybrid glycan at the aa 319 site. These changes increase the instability of the G-protein trimer and may lead to a decrease in vaccine protective efficacy. Ultimately, we determined that N-glycan heterogeneity affects the immune-protection effect of antigen proteins by altering their dynamic characteristics, enhancing our understanding of the correlation between antigen structural characteristics and efficacy.

Importance: N-glycosylation of rabies virus glycoprotein dynamically regulates protein folding, stability, and antigenicity. Therefore, regulation of N-glycan modification is key to improving vaccine stability and protective efficacy. How the type and modification sites of N-glycans affect the protective efficacy of rabies vaccines remains unclear. Our research indicates that there are differences in the protective efficacy of rabies virus G-proteins modified with different N-glycans. Moreover, the modification of the three-branched hybrid glycan at the aa 319 site of G-protein significantly altered the hydrophobicity, flexibility, and radius, and increased its trimeric antigen instability through molecular dynamics demonstrations. These findings update the current understanding of the impact of glycans on vaccine antigenicity and develop a system to evaluate the stability of antigen glycoproteins based on molecular dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信