Allograft inflammatory Factor-1 induces the dedifferentiation of Vascular Smooth Muscle cells into a macrophage-like phenotype both in vivo and in vitro
Ruoyu Dong , Jikuan Li , Guangwei Jiang , Yunjie Tian , Wei Bi
{"title":"Allograft inflammatory Factor-1 induces the dedifferentiation of Vascular Smooth Muscle cells into a macrophage-like phenotype both in vivo and in vitro","authors":"Ruoyu Dong , Jikuan Li , Guangwei Jiang , Yunjie Tian , Wei Bi","doi":"10.1016/j.yexcr.2025.114475","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis, a chronic lipid-driven vascular inflammatory disease involving multiple cell types, is the primary cause of cardiovascular disease-related morbidity and mortality. Allograft inflammatory factor 1 (AIF-1) contributes to atherosclerosis development by affecting vascular smooth muscle cells (VSMCs). Increasing research indicates that VSMCs are pivotal in atherosclerosis progression, particularly in macrophage-like phenotypic switching, though the mechanism of AIF-1 VSMCs phenotypic switching is not well understood. This study aims to correlate AIF-1 expression with atherosclerosis development and VSMCs phenotypic switching. AIF-1 was expressed in the atherosclerotic plaques of patients with carotid artery narrowing and atherosclerosis mice. AIF-1 was expressed in ox-LDL treated VSMCs and promoted the apoptosis of VSMCs. AIF-1 significantly influenced macrophage-like VSMC numbers through the AIF-1/NF-κB pathway, enhancing lipid uptake and TNF-α and IL-6 secretion. This study showed increased AIF-1 expression in atherosclerotic plaques in both patients with carotid stenosis and an atherosclerosis animal model. AIF-1 facilitated VSMC dedifferentiation into macrophage-like cells, enhancing lipid uptake and inflammatory factor release through the AIF-1/NF-κB pathway.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"446 1","pages":"Article 114475"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000710","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis, a chronic lipid-driven vascular inflammatory disease involving multiple cell types, is the primary cause of cardiovascular disease-related morbidity and mortality. Allograft inflammatory factor 1 (AIF-1) contributes to atherosclerosis development by affecting vascular smooth muscle cells (VSMCs). Increasing research indicates that VSMCs are pivotal in atherosclerosis progression, particularly in macrophage-like phenotypic switching, though the mechanism of AIF-1 VSMCs phenotypic switching is not well understood. This study aims to correlate AIF-1 expression with atherosclerosis development and VSMCs phenotypic switching. AIF-1 was expressed in the atherosclerotic plaques of patients with carotid artery narrowing and atherosclerosis mice. AIF-1 was expressed in ox-LDL treated VSMCs and promoted the apoptosis of VSMCs. AIF-1 significantly influenced macrophage-like VSMC numbers through the AIF-1/NF-κB pathway, enhancing lipid uptake and TNF-α and IL-6 secretion. This study showed increased AIF-1 expression in atherosclerotic plaques in both patients with carotid stenosis and an atherosclerosis animal model. AIF-1 facilitated VSMC dedifferentiation into macrophage-like cells, enhancing lipid uptake and inflammatory factor release through the AIF-1/NF-κB pathway.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.