Chloe A Briney, Jesslyn C Henriksen, Chenwei Lin, Lisa A Jones, Leif Benner, Addison B Rains, Roxana Gutierrez, Philip R Gafken, Olivia S Rissland
{"title":"Muskelin is a substrate adaptor of the highly regulated Drosophila embryonic CTLH E3 ligase.","authors":"Chloe A Briney, Jesslyn C Henriksen, Chenwei Lin, Lisa A Jones, Leif Benner, Addison B Rains, Roxana Gutierrez, Philip R Gafken, Olivia S Rissland","doi":"10.1038/s44319-025-00397-6","DOIUrl":null,"url":null,"abstract":"<p><p>The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies because Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting the degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental regulation of the CTLH complex is multi-pronged, including transcriptional control by OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate is a substrate adaptor for the Drosophila CTLH complex. Finally, we find that Muskelin has few targets beyond the three known RNA-binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, during which time it regulates three important RNA-binding proteins.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00397-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The maternal-to-zygotic transition (MZT) is a conserved developmental process where the maternally-derived protein and mRNA cache is replaced with newly made zygotic gene products. We have previously shown that in Drosophila the deposited RNA-binding proteins ME31B, Cup, and Trailer Hitch are ubiquitylated by the CTLH E3 ligase and cleared. However, the organization and regulation of the CTLH complex remain poorly understood in flies because Drosophila lacks an identifiable substrate adaptor, and the mechanisms restricting the degradation of ME31B and its cofactors to the MZT are unknown. Here, we show that the developmental regulation of the CTLH complex is multi-pronged, including transcriptional control by OVO and autoinhibition of the E3 ligase. One major regulatory target is the subunit Muskelin, which we demonstrate is a substrate adaptor for the Drosophila CTLH complex. Finally, we find that Muskelin has few targets beyond the three known RNA-binding proteins, showing exquisite target specificity. Thus, multiple levels of integrated regulation restrict the activity of the embryonic CTLH complex to early embryogenesis, during which time it regulates three important RNA-binding proteins.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.