Ziwei Xu, Xinwen Ying, Yi Li, Xiaoyan Dong, Jiyong Liu, Shuping Wang, Marc A. Little, Dahao Zhang, Yongshu Xie, Zibin Zhang, Ling Yu, Feihe Huang and Shijun Li
{"title":"Template-directed self-assembly of porphyrin nanorings through an imine condensation reaction†","authors":"Ziwei Xu, Xinwen Ying, Yi Li, Xiaoyan Dong, Jiyong Liu, Shuping Wang, Marc A. Little, Dahao Zhang, Yongshu Xie, Zibin Zhang, Ling Yu, Feihe Huang and Shijun Li","doi":"10.1039/D4SC08569H","DOIUrl":null,"url":null,"abstract":"<p >Template-directed self-assembly has proven to be an extremely effective method for the precise fabrication of biomacromolecules in natural systems, while artificial template-directed self-assembly systems for the preparation of highly intricate molecules remain a great challenge. In this article, we report the template-directed self-assembly of porphyrin nanorings with different cavity sizes from a tetraaldehyde-derived Zn(<small>II</small>) porphyrin and a diamine precursor through an imine condensation reaction. Up to 9 or 18 precursor molecules self-assemble together to produce a triporphyrin nanoring and a hexaporphyrin nanoring in one step, with the assistance of a tripyridine or hexapyridine template, respectively. The imine-linked porphyrin nanorings are further modified by reduction and acylation reactions to obtain more stable nanorings. The open cavities of porphyrin rings enable them to act as effective hosts to encapsulate fullerenes (C<small><sub>60</sub></small> and C<small><sub>70</sub></small>). This work presents a highly efficient template-directed self-assembly strategy for the construction of complicated molecules by using dynamic covalent chemistry of imine bond formation.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 12","pages":" 5166-5173"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc08569h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Template-directed self-assembly has proven to be an extremely effective method for the precise fabrication of biomacromolecules in natural systems, while artificial template-directed self-assembly systems for the preparation of highly intricate molecules remain a great challenge. In this article, we report the template-directed self-assembly of porphyrin nanorings with different cavity sizes from a tetraaldehyde-derived Zn(II) porphyrin and a diamine precursor through an imine condensation reaction. Up to 9 or 18 precursor molecules self-assemble together to produce a triporphyrin nanoring and a hexaporphyrin nanoring in one step, with the assistance of a tripyridine or hexapyridine template, respectively. The imine-linked porphyrin nanorings are further modified by reduction and acylation reactions to obtain more stable nanorings. The open cavities of porphyrin rings enable them to act as effective hosts to encapsulate fullerenes (C60 and C70). This work presents a highly efficient template-directed self-assembly strategy for the construction of complicated molecules by using dynamic covalent chemistry of imine bond formation.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.