Feng Xue , Mei Zhang , Rui-Yue Zhao , Xiao-Wen Wang , Yu Gu , Ye Yang , Wen-Fang Chen
{"title":"Dectin-1 participates in neuroinflammation and dopaminergic neurodegeneration through synergistic signaling crosstalk with TLR4","authors":"Feng Xue , Mei Zhang , Rui-Yue Zhao , Xiao-Wen Wang , Yu Gu , Ye Yang , Wen-Fang Chen","doi":"10.1016/j.bbi.2025.02.013","DOIUrl":null,"url":null,"abstract":"<div><div>Neuroinflammation mediated by microglial activation plays a prominent role in the pathogenesis of Parkinson’s disease (PD). Dendritic cell-associated C-type lectin-1 (Dectin-1) is a pattern recognition receptor that is involved in innate immunity. However, the role of Dectin-1 on dopaminergic neuronal damage remains unclear. Our results demonstrated that the expression of Dectin-1 was significantly increased in the microglia of the LPS-induced PD mouse model. Inhibition of Dectin-1 by laminarin (LAM) attenuated LPS-induced dopaminergic neuronal damage in substantia nigra (SN) and behavioral deficits and promoted the phenotypic transformation of microglia from M1 to M2. Moreover, inhibition or knockdown of Dectin-1 significantly decreased LPS-induced phosphorylation of Syk and P65 as well as the production of COX-2 and iNOS in BV2 cells. Knockdown of Syk also significantly decreased LPS-induced protein expressions of COX-2 and iNOS. Mechanistically, both TLR4 inhibitor and NF-κB inhibitor could antagonize LPS-induced Dectin-1 expression. Chromatin immunoprecipitation (ChIP) assays showed a physical binding of NF-κB/P65 to Dectin-1 promoter, which further indicated the regulatory effect of toll-like receptor 4 (TLR4)/NF-κB signaling pathway on Dectin-1 expression. Furthermore, the present study provided the first evidence that Dectin-1 activation by hot-alkali treated depleted zymosan <strong>(</strong>d-Zymosan) could induce dopaminergic neurotoxicity and motor dysfunction, and promote up-regulation of TLR4, iNOS and Iba-1 in C57BL/6J mice. In conclusion, Dectin-1-Syk synergistic signaling crosstalk with TLR4/NF-κB promotes and maintains inflammatory phenotypes of M1 microglia which induces dopaminergic neuronal damage in SN. These findings provide novel insights into the pivotal role of Dectin-1 in neuroinflammation, suggesting its potential as a novel therapeutic target for PD.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"126 ","pages":"Pages 260-273"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159125000546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation mediated by microglial activation plays a prominent role in the pathogenesis of Parkinson’s disease (PD). Dendritic cell-associated C-type lectin-1 (Dectin-1) is a pattern recognition receptor that is involved in innate immunity. However, the role of Dectin-1 on dopaminergic neuronal damage remains unclear. Our results demonstrated that the expression of Dectin-1 was significantly increased in the microglia of the LPS-induced PD mouse model. Inhibition of Dectin-1 by laminarin (LAM) attenuated LPS-induced dopaminergic neuronal damage in substantia nigra (SN) and behavioral deficits and promoted the phenotypic transformation of microglia from M1 to M2. Moreover, inhibition or knockdown of Dectin-1 significantly decreased LPS-induced phosphorylation of Syk and P65 as well as the production of COX-2 and iNOS in BV2 cells. Knockdown of Syk also significantly decreased LPS-induced protein expressions of COX-2 and iNOS. Mechanistically, both TLR4 inhibitor and NF-κB inhibitor could antagonize LPS-induced Dectin-1 expression. Chromatin immunoprecipitation (ChIP) assays showed a physical binding of NF-κB/P65 to Dectin-1 promoter, which further indicated the regulatory effect of toll-like receptor 4 (TLR4)/NF-κB signaling pathway on Dectin-1 expression. Furthermore, the present study provided the first evidence that Dectin-1 activation by hot-alkali treated depleted zymosan (d-Zymosan) could induce dopaminergic neurotoxicity and motor dysfunction, and promote up-regulation of TLR4, iNOS and Iba-1 in C57BL/6J mice. In conclusion, Dectin-1-Syk synergistic signaling crosstalk with TLR4/NF-κB promotes and maintains inflammatory phenotypes of M1 microglia which induces dopaminergic neuronal damage in SN. These findings provide novel insights into the pivotal role of Dectin-1 in neuroinflammation, suggesting its potential as a novel therapeutic target for PD.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.