Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer.

IF 3.4 2区 医学 Q2 ONCOLOGY
Zongtai Zheng, Fazhong Dai, Ji Liu, Yongqiang Zhang, Zhenwei Wang, Bangqi Wang, Xiaofu Qiu
{"title":"Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer.","authors":"Zongtai Zheng, Fazhong Dai, Ji Liu, Yongqiang Zhang, Zhenwei Wang, Bangqi Wang, Xiaofu Qiu","doi":"10.1186/s12885-025-13688-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bladder cancer (BLCA) exists a profound molecular diversity, with basal and luminal subtypes having different prognostic and therapeutic outcomes. Traditional methods for molecular subtyping are often time-consuming and resource-intensive. This study aims to develop machine learning models using deep learning features from hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) to predict basal and luminal subtypes in BLCA.</p><p><strong>Methods: </strong>RNA sequencing data and clinical outcomes were downloaded from seven public BLCA databases, including TCGA, GEO datasets, and the IMvigor210C cohort, to assess the prognostic value of BLCA molecular subtypes. WSIs from TCGA were used to construct and validate the machine learning models, while WSIs from Shanghai Tenth People's Hospital (STPH) and The Affiliated Guangdong Second Provincial General Hospital of Jinan University (GD2H) were used as external validations. Deep learning models were trained to obtained tumor patches within WSIs. WSI level deep learning features were extracted from tumor patches based on the RetCCL model. Support vector machine (SVM), random forest (RF), and logistic regression (LR) were developed using these features to classify basal and luminal subtypes.</p><p><strong>Results: </strong>Kaplan-Meier survival and prognostic meta-analyses showed that basal BLCA patients had significantly worse overall survival compared to luminal BLCA patients (hazard ratio = 1.47, 95% confidence interval: 1.25-1.73, P < 0.001). The LR model based on tumor patch features selected by Resnet50 model demonstrated superior performance, achieving an area under the curve (AUC) of 0.88 in the internal validation set, and 0.81 and 0.64 in the external validation sets from STPH and GD2H, respectively. This model outperformed both junior and senior pathologists in the differentiation of basal and luminal subtypes (AUC: 0.85, accuracy: 74%, sensitivity: 66%, specificity: 82%).</p><p><strong>Conclusions: </strong>This study showed the efficacy of machine learning models in predicting the basal and luminal subtypes of BLCA based on the extraction of deep learning features from tumor patches in H&E-stained WSIs. The performance of the LR model suggests that the integration of AI tools into the diagnostic process could significantly enhance the accuracy of molecular subtyping, thereby potentially informing personalized treatment strategies for BLCA patients.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"310"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13688-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bladder cancer (BLCA) exists a profound molecular diversity, with basal and luminal subtypes having different prognostic and therapeutic outcomes. Traditional methods for molecular subtyping are often time-consuming and resource-intensive. This study aims to develop machine learning models using deep learning features from hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) to predict basal and luminal subtypes in BLCA.

Methods: RNA sequencing data and clinical outcomes were downloaded from seven public BLCA databases, including TCGA, GEO datasets, and the IMvigor210C cohort, to assess the prognostic value of BLCA molecular subtypes. WSIs from TCGA were used to construct and validate the machine learning models, while WSIs from Shanghai Tenth People's Hospital (STPH) and The Affiliated Guangdong Second Provincial General Hospital of Jinan University (GD2H) were used as external validations. Deep learning models were trained to obtained tumor patches within WSIs. WSI level deep learning features were extracted from tumor patches based on the RetCCL model. Support vector machine (SVM), random forest (RF), and logistic regression (LR) were developed using these features to classify basal and luminal subtypes.

Results: Kaplan-Meier survival and prognostic meta-analyses showed that basal BLCA patients had significantly worse overall survival compared to luminal BLCA patients (hazard ratio = 1.47, 95% confidence interval: 1.25-1.73, P < 0.001). The LR model based on tumor patch features selected by Resnet50 model demonstrated superior performance, achieving an area under the curve (AUC) of 0.88 in the internal validation set, and 0.81 and 0.64 in the external validation sets from STPH and GD2H, respectively. This model outperformed both junior and senior pathologists in the differentiation of basal and luminal subtypes (AUC: 0.85, accuracy: 74%, sensitivity: 66%, specificity: 82%).

Conclusions: This study showed the efficacy of machine learning models in predicting the basal and luminal subtypes of BLCA based on the extraction of deep learning features from tumor patches in H&E-stained WSIs. The performance of the LR model suggests that the integration of AI tools into the diagnostic process could significantly enhance the accuracy of molecular subtyping, thereby potentially informing personalized treatment strategies for BLCA patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信