Revolutionizing pancreatic cancer treatment with CAR-T therapy.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Kirti Baghel, Sanjana Mehrotra, Vijay Kumar Prajapati
{"title":"Revolutionizing pancreatic cancer treatment with CAR-T therapy.","authors":"Kirti Baghel, Sanjana Mehrotra, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2024.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer remains one of the most lethal malignancies, with a five-year survival rate among the lowest of all cancers. This poor prognosis is largely due to the aggressive nature of the disease and its resistance to conventional treatments such as surgery, chemotherapy, and radiation therapy. Chimeric antigen receptor (CAR) T-cell therapy, a novel immunotherapeutic approach leverages the patient's own immune system to specifically target and eliminate cancer cells by genetically engineering T cells to express CARs that recognize tumor-specific antigens. While CAR-T therapy has demonstrated remarkable success in treating hematologic malignancies, its application to solid tumors like pancreatic cancer presents significant challenges. Recent advancements in CAR-T cell design, like the addition of co-stimulatory domains and dual-targeting CARs, have enhanced their efficacy against solid tumors. Additionally, strategies to modify the tumor microenvironment (TME), such as combining CAR-T therapy with immune checkpoint inhibitors and cytokine modulation, are being investigated to boost CAR-T cell activity against pancreatic cancer. Early-phase clinical trials targeting antigens such as carcinoembryonic antigen (CEA) and mesothelin (MSLN) in pancreatic cancer have yielded encouraging results, though obstacles like antigen escape and limited T-cell persistence remain significant challenges. This chapter outlines the current state of CAR-T therapy for pancreatic cancer, focusing on the emerging approaches to address these obstacles and underscore the potential of CAR-T therapy to transform the future of pancreatic cancer treatment.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"331-353"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2024.10.008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer remains one of the most lethal malignancies, with a five-year survival rate among the lowest of all cancers. This poor prognosis is largely due to the aggressive nature of the disease and its resistance to conventional treatments such as surgery, chemotherapy, and radiation therapy. Chimeric antigen receptor (CAR) T-cell therapy, a novel immunotherapeutic approach leverages the patient's own immune system to specifically target and eliminate cancer cells by genetically engineering T cells to express CARs that recognize tumor-specific antigens. While CAR-T therapy has demonstrated remarkable success in treating hematologic malignancies, its application to solid tumors like pancreatic cancer presents significant challenges. Recent advancements in CAR-T cell design, like the addition of co-stimulatory domains and dual-targeting CARs, have enhanced their efficacy against solid tumors. Additionally, strategies to modify the tumor microenvironment (TME), such as combining CAR-T therapy with immune checkpoint inhibitors and cytokine modulation, are being investigated to boost CAR-T cell activity against pancreatic cancer. Early-phase clinical trials targeting antigens such as carcinoembryonic antigen (CEA) and mesothelin (MSLN) in pancreatic cancer have yielded encouraging results, though obstacles like antigen escape and limited T-cell persistence remain significant challenges. This chapter outlines the current state of CAR-T therapy for pancreatic cancer, focusing on the emerging approaches to address these obstacles and underscore the potential of CAR-T therapy to transform the future of pancreatic cancer treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信