Marc-Antoine Millette, Ana Coutinho, Manuel Prieto, Christian Salesse
{"title":"Role of the Palmitoyl Group and of the Amphipathic α Helix in the Membrane Binding of the C-Terminus of G-Protein Receptor Kinase 4α/β.","authors":"Marc-Antoine Millette, Ana Coutinho, Manuel Prieto, Christian Salesse","doi":"10.1021/acs.biochem.4c00492","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane binding of monotopic proteins can involve various post-translational modifications or a combination of some membrane-binding elements. For example, amphipathic α helices and palmitoylation could drive the membrane attachment of proteins. G-protein-coupled receptor kinases (GRKs) regulate the activity of G-protein-coupled receptors. Several members of the family of GRKs are acylated. Moreover, the C-terminus of GRK6 contains an amphipathic α helix and a palmitoyl group, which could also be the case for GRK4 isoforms. In our experiments, GRK4α/β-derived peptides of differing C-terminal lengths (Cter-GRK4α/β variants) were thus studied to discriminate the individual role of the palmitoyl group and amphipathic α helix of Cter-GRK4α/β in its membrane binding. The membrane binding of the Cter-GRK4α/β variants was studied by comparing their maximum insertion pressure (MIP) to lipid monolayers as well as their intrinsic fluorescence properties using large unilamellar vesicles. The MIP data show a higher level of binding of the palmitoylated longest GRK4α/β variant. Moreover, MIP measurements in the absence and presence of 15 mol % of the negatively charged phosphoserine demonstrated that the amphipathic α helix of Cter-GRK4α/β plays a major role in its membrane binding. Accordingly, partition studies of the Cter-GRK4α/β variants to membranes by fluorescence spectroscopy demonstrate the involvement of the palmitoyl group and the amphipathic α helix of the C-terminus of GRK4α/β in its membrane binding. Altogether, the data show that both the palmitoyl group and the amphipathic helix highly favor membrane binding of the C-terminus of GRK4α/β, which should facilitate the proper anchoring of GRK4α/β and phosphorylation of GPCRs.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00492","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane binding of monotopic proteins can involve various post-translational modifications or a combination of some membrane-binding elements. For example, amphipathic α helices and palmitoylation could drive the membrane attachment of proteins. G-protein-coupled receptor kinases (GRKs) regulate the activity of G-protein-coupled receptors. Several members of the family of GRKs are acylated. Moreover, the C-terminus of GRK6 contains an amphipathic α helix and a palmitoyl group, which could also be the case for GRK4 isoforms. In our experiments, GRK4α/β-derived peptides of differing C-terminal lengths (Cter-GRK4α/β variants) were thus studied to discriminate the individual role of the palmitoyl group and amphipathic α helix of Cter-GRK4α/β in its membrane binding. The membrane binding of the Cter-GRK4α/β variants was studied by comparing their maximum insertion pressure (MIP) to lipid monolayers as well as their intrinsic fluorescence properties using large unilamellar vesicles. The MIP data show a higher level of binding of the palmitoylated longest GRK4α/β variant. Moreover, MIP measurements in the absence and presence of 15 mol % of the negatively charged phosphoserine demonstrated that the amphipathic α helix of Cter-GRK4α/β plays a major role in its membrane binding. Accordingly, partition studies of the Cter-GRK4α/β variants to membranes by fluorescence spectroscopy demonstrate the involvement of the palmitoyl group and the amphipathic α helix of the C-terminus of GRK4α/β in its membrane binding. Altogether, the data show that both the palmitoyl group and the amphipathic helix highly favor membrane binding of the C-terminus of GRK4α/β, which should facilitate the proper anchoring of GRK4α/β and phosphorylation of GPCRs.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.