{"title":"Interpreting the Histidine-Containing Small Peptides on Tau Protein Tautomerism: A Theoretical Perspective.","authors":"Yingqi Tang, Nannan Li, Hai Li, Jin Yong Lee","doi":"10.1021/acs.biochem.4c00633","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring the nature of histidine residue tautomerization via a systematic conformational study is essential for understanding the pathology and toxicity of several neurodegenerative diseases, as well as for their diagnosis and treatment. Herein, density functional theory (DFT) calculations were used to determine the Tau protein's histidine-containing dipeptide (Lys-His, His-Gln, and His-Val) and tripeptide (Lys-His-Gln and Lys-His-Val) isomeric conformations via intramolecular hydrogen bond interactions, with particular attention to the influence of N-H group isomeric forms on their properties. The calculated infrared (IR) spectroscopy of the N-H stretch region of each isomer and nuclear magnetic resonance (NMR) shielding of the imidazole ring carbon atoms (<sup>13</sup>C<sup>1</sup>, <sup>13</sup>C<sup>2</sup>, and <sup>13</sup>C<sup>3</sup>) were investigated. The results show that both the IR spectrum of the N-H group and the NMR shielding of <sup>13</sup>C nuclei on the imidazole ring can be used to identify the histidine-containing dipeptide and tripeptide tautomeric isomers. Systematically analyzing the hydrogen bonding interactions, the atomic charge distribution, the potential energy distribution, and the HOMO-LUMO transitions of each isomer further verified the above conclusions. This study provides theoretical evidence for the conformation identification of the histidine-containing dipeptide and tripeptide isomers on Tau protein.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00633","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the nature of histidine residue tautomerization via a systematic conformational study is essential for understanding the pathology and toxicity of several neurodegenerative diseases, as well as for their diagnosis and treatment. Herein, density functional theory (DFT) calculations were used to determine the Tau protein's histidine-containing dipeptide (Lys-His, His-Gln, and His-Val) and tripeptide (Lys-His-Gln and Lys-His-Val) isomeric conformations via intramolecular hydrogen bond interactions, with particular attention to the influence of N-H group isomeric forms on their properties. The calculated infrared (IR) spectroscopy of the N-H stretch region of each isomer and nuclear magnetic resonance (NMR) shielding of the imidazole ring carbon atoms (13C1, 13C2, and 13C3) were investigated. The results show that both the IR spectrum of the N-H group and the NMR shielding of 13C nuclei on the imidazole ring can be used to identify the histidine-containing dipeptide and tripeptide tautomeric isomers. Systematically analyzing the hydrogen bonding interactions, the atomic charge distribution, the potential energy distribution, and the HOMO-LUMO transitions of each isomer further verified the above conclusions. This study provides theoretical evidence for the conformation identification of the histidine-containing dipeptide and tripeptide isomers on Tau protein.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.