Navigating the landscape: A comprehensive overview of computational approaches in therapeutic antibody design and analysis.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Amar Jeet Yadav, Khushboo Bhagat, Akshit Sharma, Aditya K Padhi
{"title":"Navigating the landscape: A comprehensive overview of computational approaches in therapeutic antibody design and analysis.","authors":"Amar Jeet Yadav, Khushboo Bhagat, Akshit Sharma, Aditya K Padhi","doi":"10.1016/bs.apcsb.2024.10.011","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy, harnessing components like antibodies, cells, and cytokines, has become a cornerstone in treating diseases such as cancer and autoimmune disorders. Therapeutic antibodies, in particular, have transformed modern medicine, providing a targeted approach that destroys disease-causing cells while sparing healthy tissues, thereby reducing the side effects commonly associated with chemotherapy. Beyond oncology, these antibodies also hold promise in addressing chronic infections where conventional therapeutics may fall short. However, antibodies identified through in vivo or in vitro methods often require extensive engineering to enhance their therapeutic potential. This optimization process, aimed at improving affinity, specificity, and reducing immunogenicity, is both challenging and costly, often involving trade-offs between critical properties. Traditional methods of antibody development, such as hybridoma technology and display techniques, are resource-intensive and time-consuming. In contrast, computational approaches offer a faster, more efficient alternative, enabling the precise design and analysis of therapeutic antibodies. These methods include sequence and structural bioinformatics approaches, next-generation sequencing-based data mining, machine learning algorithms, systems biology, immuno-informatics, and integrative approaches. These approaches are advancing the field by providing new insights and enhancing the accuracy of antibody design and analysis. In conclusion, computational approaches are essential in the development of therapeutic antibodies, significantly improving the precision and speed of discovery, optimization, and validation. Integrating these methods with experimental approaches accelerates therapeutic antibody development, paving the way for innovative strategies and treatments for various diseases ranging from cancers to autoimmune and infectious diseases.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"144 ","pages":"33-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2024.10.011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy, harnessing components like antibodies, cells, and cytokines, has become a cornerstone in treating diseases such as cancer and autoimmune disorders. Therapeutic antibodies, in particular, have transformed modern medicine, providing a targeted approach that destroys disease-causing cells while sparing healthy tissues, thereby reducing the side effects commonly associated with chemotherapy. Beyond oncology, these antibodies also hold promise in addressing chronic infections where conventional therapeutics may fall short. However, antibodies identified through in vivo or in vitro methods often require extensive engineering to enhance their therapeutic potential. This optimization process, aimed at improving affinity, specificity, and reducing immunogenicity, is both challenging and costly, often involving trade-offs between critical properties. Traditional methods of antibody development, such as hybridoma technology and display techniques, are resource-intensive and time-consuming. In contrast, computational approaches offer a faster, more efficient alternative, enabling the precise design and analysis of therapeutic antibodies. These methods include sequence and structural bioinformatics approaches, next-generation sequencing-based data mining, machine learning algorithms, systems biology, immuno-informatics, and integrative approaches. These approaches are advancing the field by providing new insights and enhancing the accuracy of antibody design and analysis. In conclusion, computational approaches are essential in the development of therapeutic antibodies, significantly improving the precision and speed of discovery, optimization, and validation. Integrating these methods with experimental approaches accelerates therapeutic antibody development, paving the way for innovative strategies and treatments for various diseases ranging from cancers to autoimmune and infectious diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信