Dolutegravir induces endoplasmic reticulum stress at the blood–brain barrier

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chang Huang, Qing Rui Qu, Md. Tozammel Hoque, Reina Bendayan
{"title":"Dolutegravir induces endoplasmic reticulum stress at the blood–brain barrier","authors":"Chang Huang,&nbsp;Qing Rui Qu,&nbsp;Md. Tozammel Hoque,&nbsp;Reina Bendayan","doi":"10.1096/fj.202402677RR","DOIUrl":null,"url":null,"abstract":"<p>Dolutegravir (DTG)-based antiretroviral therapy is the contemporary first-line therapy to treat HIV infection. Despite its efficacy, mounting evidence has suggested a higher risk of neuropsychiatric adverse effect (NPAE) associated with DTG use, with a limited understanding of the underlying mechanisms. Our laboratory has previously reported a toxic effect of DTG but not bictegravir (BTG) in disrupting the blood–brain barrier (BBB) integrity. The current study aimed to investigate the underlying mechanism of DTG toxicity. Primary cultures of mouse brain microvascular endothelial cells were treated with DTG and BTG at therapeutically relevant concentrations. RNA sequencing, qPCR, western blot analysis, and cell stress assays (Ca<sup>2+</sup> flux, H2DCFDA, TMRE, MTT) were applied to assess the results. The gene ontology (GO) analysis revealed an enriched transcriptome signature of endoplasmic reticulum (ER) stress following DTG treatment. We demonstrated that therapeutic concentrations of DTG but not BTG activated the ER stress sensor proteins (PERK, IRE1, p-IRE1) and downstream ER stress markers (eIF2α, p-eIF2α, <i>Hspa5</i>, <i>Atf4</i>, <i>Ddit3</i>, <i>Ppp1r15a</i>, <i>Xbp1</i>, <i>spliced-Xbp1</i>). In addition, DTG treatment resulted in a transient Ca<sup>2+</sup> flux, an aberrant mitochondrial membrane potential, and a significant increase in reactive oxygen species in treated cells. Furthermore, we found that prior treatment with ER sensor or ER stress inhibitors significantly mitigated the DTG-induced downregulation of tight junction proteins (Zo-1, Ocln, Cldn5) and elevation of pro-inflammatory cytokines and chemokines (<i>Il6</i>, <i>Il23a</i>, <i>Il12b</i>, <i>Cxcl1</i>, <i>Cxcl2</i>). The current study provides valuable insights into DTG-mediated cellular toxicity mechanisms, which may serve as a potential explanation for DTG-associated NPAEs in the clinic.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202402677RR","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402677RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dolutegravir (DTG)-based antiretroviral therapy is the contemporary first-line therapy to treat HIV infection. Despite its efficacy, mounting evidence has suggested a higher risk of neuropsychiatric adverse effect (NPAE) associated with DTG use, with a limited understanding of the underlying mechanisms. Our laboratory has previously reported a toxic effect of DTG but not bictegravir (BTG) in disrupting the blood–brain barrier (BBB) integrity. The current study aimed to investigate the underlying mechanism of DTG toxicity. Primary cultures of mouse brain microvascular endothelial cells were treated with DTG and BTG at therapeutically relevant concentrations. RNA sequencing, qPCR, western blot analysis, and cell stress assays (Ca2+ flux, H2DCFDA, TMRE, MTT) were applied to assess the results. The gene ontology (GO) analysis revealed an enriched transcriptome signature of endoplasmic reticulum (ER) stress following DTG treatment. We demonstrated that therapeutic concentrations of DTG but not BTG activated the ER stress sensor proteins (PERK, IRE1, p-IRE1) and downstream ER stress markers (eIF2α, p-eIF2α, Hspa5, Atf4, Ddit3, Ppp1r15a, Xbp1, spliced-Xbp1). In addition, DTG treatment resulted in a transient Ca2+ flux, an aberrant mitochondrial membrane potential, and a significant increase in reactive oxygen species in treated cells. Furthermore, we found that prior treatment with ER sensor or ER stress inhibitors significantly mitigated the DTG-induced downregulation of tight junction proteins (Zo-1, Ocln, Cldn5) and elevation of pro-inflammatory cytokines and chemokines (Il6, Il23a, Il12b, Cxcl1, Cxcl2). The current study provides valuable insights into DTG-mediated cellular toxicity mechanisms, which may serve as a potential explanation for DTG-associated NPAEs in the clinic.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信