INTENTAS - an entanglement-enhanced atomic sensor for microgravity

IF 5.8 2区 物理与天体物理 Q1 OPTICS
O. Anton, I. Bröckel, D. Derr, A. Fieguth, M. Franzke, M. Gärtner, E. Giese, J. S. Haase, J. Hamann, A. Heidt, S. Kanthak, C. Klempt, J. Kruse, M. Krutzik, S. Kubitza, C. Lotz, K. Müller, J. Pahl, E. M. Rasel, M. Schiemangk, W. P. Schleich, S. Schwertfeger, A. Wicht, L. Wörner
{"title":"INTENTAS - an entanglement-enhanced atomic sensor for microgravity","authors":"O. Anton,&nbsp;I. Bröckel,&nbsp;D. Derr,&nbsp;A. Fieguth,&nbsp;M. Franzke,&nbsp;M. Gärtner,&nbsp;E. Giese,&nbsp;J. S. Haase,&nbsp;J. Hamann,&nbsp;A. Heidt,&nbsp;S. Kanthak,&nbsp;C. Klempt,&nbsp;J. Kruse,&nbsp;M. Krutzik,&nbsp;S. Kubitza,&nbsp;C. Lotz,&nbsp;K. Müller,&nbsp;J. Pahl,&nbsp;E. M. Rasel,&nbsp;M. Schiemangk,&nbsp;W. P. Schleich,&nbsp;S. Schwertfeger,&nbsp;A. Wicht,&nbsp;L. Wörner","doi":"10.1140/epjqt/s40507-025-00330-9","DOIUrl":null,"url":null,"abstract":"<div><p>The INTENTAS project aims to develop an atomic sensor utilizing entangled Bose-Einstein condensates (BECs) in a microgravity environment. This key achievement is necessary to advance the capability for measurements that benefit from both entanglement-enhanced sensitivities and extended interrogation times. The project addresses significant challenges related to size, weight, and power management (SWaP) specific to the experimental platform at the Einstein-Elevator in Hannover. The design ensures a low-noise environment essential for the creation and detection of entanglement. Additionally, the apparatus features an innovative approach to the all-optical creation of BECs, providing a flexible system for various configurations and meeting the requirements for rapid turnaround times. Successful demonstration of this technology in the Einstein-Elevator will pave the way for a future deployment in space, where its potential applications will unlock high-precision quantum sensing.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00330-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00330-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The INTENTAS project aims to develop an atomic sensor utilizing entangled Bose-Einstein condensates (BECs) in a microgravity environment. This key achievement is necessary to advance the capability for measurements that benefit from both entanglement-enhanced sensitivities and extended interrogation times. The project addresses significant challenges related to size, weight, and power management (SWaP) specific to the experimental platform at the Einstein-Elevator in Hannover. The design ensures a low-noise environment essential for the creation and detection of entanglement. Additionally, the apparatus features an innovative approach to the all-optical creation of BECs, providing a flexible system for various configurations and meeting the requirements for rapid turnaround times. Successful demonstration of this technology in the Einstein-Elevator will pave the way for a future deployment in space, where its potential applications will unlock high-precision quantum sensing.

INTENTAS——用于微重力的纠缠增强原子传感器
INTENTAS项目旨在开发一种在微重力环境下利用纠缠玻色-爱因斯坦凝聚物(BECs)的原子传感器。这一关键成果对于提高测量能力是必要的,这些测量能力受益于纠缠增强的灵敏度和延长的询问时间。该项目解决了汉诺威爱因斯坦电梯实验平台在尺寸、重量和电源管理(SWaP)方面的重大挑战。这种设计确保了低噪声环境对产生和检测纠缠至关重要。此外,该设备还采用了一种创新的方法来创建全光学BECs,为各种配置提供灵活的系统,并满足快速周转时间的要求。这项技术在爱因斯坦电梯上的成功演示将为未来在太空中的部署铺平道路,其潜在应用将解锁高精度量子传感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信