Category-Level Multi-Object 9D State Tracking Using Object-Centric Multi-Scale Transformer in Point Cloud Stream

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingtao Sun;Yaonan Wang;Mingtao Feng;Xiaofeng Guo;Huimin Lu;Xieyuanli Chen
{"title":"Category-Level Multi-Object 9D State Tracking Using Object-Centric Multi-Scale Transformer in Point Cloud Stream","authors":"Jingtao Sun;Yaonan Wang;Mingtao Feng;Xiaofeng Guo;Huimin Lu;Xieyuanli Chen","doi":"10.1109/TMM.2024.3521664","DOIUrl":null,"url":null,"abstract":"Category-level object pose estimation and tracking has achieved impressive progress in computer vision, augmented reality, and robotics. Existing methods either estimate the object states from a single observation or only track the 6-DoF pose of a single object. In this paper, we focus on category-level multi-object 9-Dimensional (9D) state tracking from the point cloud stream. We propose a novel 9D state estimation network to estimate the 6-DoF pose and 3D size of each instance in the scene. It uses our devised multi-scale global attention and object-level local attention modules to obtain representative latent features to estimate the 9D state of each object in the current observation. We then integrate our network estimation into a Kalman filter to combine previous states with the current estimates and achieve multi-object 9D state tracking. Experiment results on two public datasets show that our method achieves state-of-the-art performance on both category-level multi-object state estimation and pose tracking tasks. Furthermore, we directly apply the pre-trained model of our method to our air-ground robot system with multiple moving objects. Experiments on our collected real-world dataset show our method's strong generalization ability and real-time pose tracking performance.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1072-1085"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814715/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Category-level object pose estimation and tracking has achieved impressive progress in computer vision, augmented reality, and robotics. Existing methods either estimate the object states from a single observation or only track the 6-DoF pose of a single object. In this paper, we focus on category-level multi-object 9-Dimensional (9D) state tracking from the point cloud stream. We propose a novel 9D state estimation network to estimate the 6-DoF pose and 3D size of each instance in the scene. It uses our devised multi-scale global attention and object-level local attention modules to obtain representative latent features to estimate the 9D state of each object in the current observation. We then integrate our network estimation into a Kalman filter to combine previous states with the current estimates and achieve multi-object 9D state tracking. Experiment results on two public datasets show that our method achieves state-of-the-art performance on both category-level multi-object state estimation and pose tracking tasks. Furthermore, we directly apply the pre-trained model of our method to our air-ground robot system with multiple moving objects. Experiments on our collected real-world dataset show our method's strong generalization ability and real-time pose tracking performance.
点云流中基于对象中心的多尺度变压器的类别级多目标9D状态跟踪
类别级对象姿态估计和跟踪在计算机视觉、增强现实和机器人技术方面取得了令人印象深刻的进展。现有的方法要么是通过单次观测来估计目标状态,要么是只跟踪单个目标的6自由度姿态。本文主要研究了基于点云流的类别级多目标9维状态跟踪。我们提出了一种新的9D状态估计网络来估计场景中每个实例的6自由度姿态和3D尺寸。它使用我们设计的多尺度全局注意和对象级局部注意模块来获得具有代表性的潜在特征,以估计当前观测中每个对象的9D状态。然后将我们的网络估计集成到一个卡尔曼滤波器中,将之前的状态与当前的估计结合起来,实现多目标9D状态跟踪。在两个公共数据集上的实验结果表明,我们的方法在类别级多目标状态估计和姿态跟踪任务上都达到了最先进的性能。此外,我们将该方法的预训练模型直接应用于多运动目标的空地机器人系统。在实际数据集上的实验表明,该方法具有较强的泛化能力和实时姿态跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信