{"title":"Meta-Learning Enhanced Physics-Informed Graph Attention Convolutional Network for Distribution Power System State Estimation","authors":"Huayi Wu;Zhao Xu;Minghao Wang;Xue Lyu","doi":"10.1109/TNSE.2025.3525625","DOIUrl":null,"url":null,"abstract":"Promptly perceiving distribution system states is challenged by frequent topology changes and uncertain power injections. To address these issues, a Meta-learning enhanced physics-informed graph attention convolutional network (Meta-PIGACN) model is proposed to handle topological variability in distribution system state estimation (DSSE). Specifically, physics information is integrated into the graph convolutional network, enabling a physics-informed edge-weighting process that incorporates physical information to control the aggregation of neighboring nodes. Besides, the graph attention mechanism automatically adjusts the importance of different neighboring nodes, allowing the capture and preservation of inherent system features across varying topologies, thereby improving state estimation accuracy. Furthermore, meta-learning is proposed to acquire empirical knowledge across multiple topologies so that the model can rapidly adapt to new configurations through iterative gradient descent updates even in large-scale systems. The simulation results based on the 33/118/1746-node distribution systems show the high accuracy and efficiency of the proposed model.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"1186-1197"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836912/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Promptly perceiving distribution system states is challenged by frequent topology changes and uncertain power injections. To address these issues, a Meta-learning enhanced physics-informed graph attention convolutional network (Meta-PIGACN) model is proposed to handle topological variability in distribution system state estimation (DSSE). Specifically, physics information is integrated into the graph convolutional network, enabling a physics-informed edge-weighting process that incorporates physical information to control the aggregation of neighboring nodes. Besides, the graph attention mechanism automatically adjusts the importance of different neighboring nodes, allowing the capture and preservation of inherent system features across varying topologies, thereby improving state estimation accuracy. Furthermore, meta-learning is proposed to acquire empirical knowledge across multiple topologies so that the model can rapidly adapt to new configurations through iterative gradient descent updates even in large-scale systems. The simulation results based on the 33/118/1746-node distribution systems show the high accuracy and efficiency of the proposed model.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.