SGCS: A Cost-Effective Quality Control System for Strategic Workers in Mobile Crowd Sensing

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Han Wang;Anfeng Liu;Neal N. Xiong
{"title":"SGCS: A Cost-Effective Quality Control System for Strategic Workers in Mobile Crowd Sensing","authors":"Han Wang;Anfeng Liu;Neal N. Xiong","doi":"10.1109/TNSE.2024.3524576","DOIUrl":null,"url":null,"abstract":"Many game-based data collection schemes aim to optimize system profits in Mobile Crowd Sensing (MCS). These schemes often assume that the platform knows the data quality upon receipt from workers, ignoring the verification costs; and assume all low-quality submissions are detected. However, due to the challenge of Information Elicitation Without Verification (IEWV), previous game strategies fail to address two key issues in real-world MCS: (1) Verification incurs costs, so the Nash equilibrium from previous studies may not hold. (2) Cheating workers may not be detected, leading to poor-quality data submissions, a scenario not considered in previous models. To address these challenges, we propose a new <underline>S</u>tackelberg <underline>G</u>ame-based quality <underline>C</u>ontrol <underline>S</u>ystem (SGCS). Theoretically, we derive the minimum verification rate required for workers to submit high-quality data, considering their strategic responses to the platform's verification rate. We also design a Worker-Dependent Verification Rates (WDVR) algorithm that identifies honest workers focusing on long-term gains, reducing verification rates for them to lower average verification costs and enhance platform utilities. Our approach is validated through a drone-assisted data collection application, demonstrating that: (1) A minimum effective verification rate ensures strategic workers submit high-quality data. (2) There is a complex trade-off between data quality, verification rates, and platform utilities. Higher data quality increases platform income but also raises verification costs more rapidly, potentially reducing overall utilities. The proposed SGCS provides a practical game-theoretic method for MCS data collection.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"1146-1158"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819632/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Many game-based data collection schemes aim to optimize system profits in Mobile Crowd Sensing (MCS). These schemes often assume that the platform knows the data quality upon receipt from workers, ignoring the verification costs; and assume all low-quality submissions are detected. However, due to the challenge of Information Elicitation Without Verification (IEWV), previous game strategies fail to address two key issues in real-world MCS: (1) Verification incurs costs, so the Nash equilibrium from previous studies may not hold. (2) Cheating workers may not be detected, leading to poor-quality data submissions, a scenario not considered in previous models. To address these challenges, we propose a new Stackelberg Game-based quality Control System (SGCS). Theoretically, we derive the minimum verification rate required for workers to submit high-quality data, considering their strategic responses to the platform's verification rate. We also design a Worker-Dependent Verification Rates (WDVR) algorithm that identifies honest workers focusing on long-term gains, reducing verification rates for them to lower average verification costs and enhance platform utilities. Our approach is validated through a drone-assisted data collection application, demonstrating that: (1) A minimum effective verification rate ensures strategic workers submit high-quality data. (2) There is a complex trade-off between data quality, verification rates, and platform utilities. Higher data quality increases platform income but also raises verification costs more rapidly, potentially reducing overall utilities. The proposed SGCS provides a practical game-theoretic method for MCS data collection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信