{"title":"Robust Multi-View Clustering via Graph-Oriented High-Order Correlations Learning","authors":"Wenzhe Liu;Jiongcheng Zhu;Huibing Wang;Yong Zhang","doi":"10.1109/TNSE.2024.3485646","DOIUrl":null,"url":null,"abstract":"Multi-view clustering aims to partition data into corresponding clusters by leveraging features from various views to reveal the underlying structure of the data fully. However, existing multi-view clustering methods, particularly graph-based techniques, face two main issues: 1) They often construct similarity matrices directly from low-quality and inflexible graphs, resulting in inadequate fusion of multi-view information and impacting clustering performance; 2) Most methods focus only on consensus or pairwise associations between views, neglecting more complex higher-order correlations among multiple views, which limits improvements in clustering performance. To address these issues, we propose a novel multi-view clustering method called Robust Multi-View Clustering via Graph-Oriented High-Order Correlations Learning (GHCL). GHCL first learns latent embeddings for each view and stacks these embeddings into a third-order tensor. Then, Tucker decomposition and regularization constraints are applied to optimize the tensor and error terms, producing high-quality denoised graphs. Additionally, GHCL introduces an adaptive confidence mechanism that integrates the learned similarity matrix and consensus representation into a unified step, enhancing multi-view information fusion and clustering effectiveness. Extensive experiments demonstrate that GHCL significantly outperforms current state-of-the-art techniques on multiple datasets. It effectively integrates multi-view information and captures higher-order correlations between views, improving clustering accuracy and robustness in handling complex data, thereby showcasing its practical value in multi-view data analysis.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"559-570"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740343/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view clustering aims to partition data into corresponding clusters by leveraging features from various views to reveal the underlying structure of the data fully. However, existing multi-view clustering methods, particularly graph-based techniques, face two main issues: 1) They often construct similarity matrices directly from low-quality and inflexible graphs, resulting in inadequate fusion of multi-view information and impacting clustering performance; 2) Most methods focus only on consensus or pairwise associations between views, neglecting more complex higher-order correlations among multiple views, which limits improvements in clustering performance. To address these issues, we propose a novel multi-view clustering method called Robust Multi-View Clustering via Graph-Oriented High-Order Correlations Learning (GHCL). GHCL first learns latent embeddings for each view and stacks these embeddings into a third-order tensor. Then, Tucker decomposition and regularization constraints are applied to optimize the tensor and error terms, producing high-quality denoised graphs. Additionally, GHCL introduces an adaptive confidence mechanism that integrates the learned similarity matrix and consensus representation into a unified step, enhancing multi-view information fusion and clustering effectiveness. Extensive experiments demonstrate that GHCL significantly outperforms current state-of-the-art techniques on multiple datasets. It effectively integrates multi-view information and captures higher-order correlations between views, improving clustering accuracy and robustness in handling complex data, thereby showcasing its practical value in multi-view data analysis.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.