Lakshmikanta Sau;Priyadarshi Mukherjee;Sasthi C. Ghosh
{"title":"Priority-Aware Grouping-Based Multihop Routing Scheme for RIS-Assisted Wireless Networks","authors":"Lakshmikanta Sau;Priyadarshi Mukherjee;Sasthi C. Ghosh","doi":"10.1109/TNSE.2024.3524619","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RISs) is a novel communication technology that has been recently presented as a potential candidate for beyond fifth-generation wireless communication networks. In this paper, we propose a priority-aware user traffic-dependent grouping-based multihop routing scheme for a RIS-assisted millimeter wave (mmWave) device-to-device (D2D) communication network with spatially correlated channels. Specifically, the proposed scheme exploits the priority of the users (based on their respective delay-constrained applications) and the aspect of spatial correlation in the narrowly spaced reflecting elements of the RISs. Here, based on the other users in the neighborhood, their respective traffic characteristics, and the already deployed RISs in the surroundings, we establish a multihop connection for information transfer from one of the users to its intended receiver. In this context, we take into account the impact of considering practical discrete phase shifts at the RIS patches instead of its ideal continuous counterpart. Moreover, we also claim and demonstrate that the existing classic least remaining distance (LRD)-based approach is not always the optimal solution. Finally, numerical results demonstrate the advantages of the proposed strategy and that it significantly outperforms the existing benchmark schemes in terms of system performance metrics such as data throughput, energy consumption, as well as energy efficiency.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 2","pages":"1172-1185"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829975/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surfaces (RISs) is a novel communication technology that has been recently presented as a potential candidate for beyond fifth-generation wireless communication networks. In this paper, we propose a priority-aware user traffic-dependent grouping-based multihop routing scheme for a RIS-assisted millimeter wave (mmWave) device-to-device (D2D) communication network with spatially correlated channels. Specifically, the proposed scheme exploits the priority of the users (based on their respective delay-constrained applications) and the aspect of spatial correlation in the narrowly spaced reflecting elements of the RISs. Here, based on the other users in the neighborhood, their respective traffic characteristics, and the already deployed RISs in the surroundings, we establish a multihop connection for information transfer from one of the users to its intended receiver. In this context, we take into account the impact of considering practical discrete phase shifts at the RIS patches instead of its ideal continuous counterpart. Moreover, we also claim and demonstrate that the existing classic least remaining distance (LRD)-based approach is not always the optimal solution. Finally, numerical results demonstrate the advantages of the proposed strategy and that it significantly outperforms the existing benchmark schemes in terms of system performance metrics such as data throughput, energy consumption, as well as energy efficiency.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.