{"title":"Phase equilibria in the Fe-rich corner of the Fe-Nb-Zr system at 1200 °C","authors":"M.R. Tolosa , G. Aurelio , L. Acosta , N. Nieva","doi":"10.1016/j.intermet.2025.108712","DOIUrl":null,"url":null,"abstract":"<div><div>The Fe-rich corner of the Fe-Nb-Zr phase diagram was studied at 1200 °C by using synchrotron X-ray diffraction and quantitative electron probe microanalysis. The Fe<sub>2</sub>Nb(C14) hexagonal Laves phase, Fe<sub>23</sub>Zr<sub>6</sub> and Fe(α) compounds were found. The existence of two three-phase fields (Fe<sub>2</sub>(Zr<sub>1-x</sub>Nbx)(C14) + Fe(α) + Fe<sub>23</sub>Zr<sub>6</sub>) and (Fe<sub>2</sub>(Zr<sub>1-x</sub>Nb<sub>x</sub>)(C14) + Fe<sub>2</sub>Zr(C15) + Fe<sub>23</sub>Zr<sub>6</sub>) and five two-phase fields (Fe<sub>2</sub>(Zr<sub>1-x</sub>Nb<sub>x</sub>)C14 + Fe(α)), (Fe(α) + Fe<sub>23</sub>Zr<sub>6</sub>), (Fe<sub>23</sub>Zr<sub>6</sub> + Fe<sub>2</sub>Zr(C15)), (Fe<sub>2</sub>(Zr<sub>1-x</sub>Nb<sub>x</sub>)(C14) + Fe<sub>23</sub>Zr<sub>6</sub>) and (Fe<sub>2</sub>(Zr<sub>1-x</sub>Nb<sub>x</sub>)(C14) + Fe<sub>2</sub>Zr(C15)) are proposed in the present work. The phase diagram section at 1200 °C in the Fe-rich corner of the Fe-Nb-Zr system has been re-drawn.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"180 ","pages":"Article 108712"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Fe-rich corner of the Fe-Nb-Zr phase diagram was studied at 1200 °C by using synchrotron X-ray diffraction and quantitative electron probe microanalysis. The Fe2Nb(C14) hexagonal Laves phase, Fe23Zr6 and Fe(α) compounds were found. The existence of two three-phase fields (Fe2(Zr1-xNbx)(C14) + Fe(α) + Fe23Zr6) and (Fe2(Zr1-xNbx)(C14) + Fe2Zr(C15) + Fe23Zr6) and five two-phase fields (Fe2(Zr1-xNbx)C14 + Fe(α)), (Fe(α) + Fe23Zr6), (Fe23Zr6 + Fe2Zr(C15)), (Fe2(Zr1-xNbx)(C14) + Fe23Zr6) and (Fe2(Zr1-xNbx)(C14) + Fe2Zr(C15)) are proposed in the present work. The phase diagram section at 1200 °C in the Fe-rich corner of the Fe-Nb-Zr system has been re-drawn.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.