Carla Miró-Vinyals , Sarah Emmert , Gina Grammbitter , Alex Jud , Tobias Kockmann , Pablo Rivera-Fuentes
{"title":"Characterization of the glutathione redox state in the Golgi apparatus","authors":"Carla Miró-Vinyals , Sarah Emmert , Gina Grammbitter , Alex Jud , Tobias Kockmann , Pablo Rivera-Fuentes","doi":"10.1016/j.redox.2025.103560","DOIUrl":null,"url":null,"abstract":"<div><div>Redox homeostasis is crucial for cell function, and, in eukaryotic cells, studying it in a compartmentalized way is essential due to the redox variations between different organelles. The redox state of organelles is largely determined by the redox potential of glutathione, <em>E</em><sub>GSH</sub>, and the concentration of its reduced and oxidized species, <em>[GS]</em>. The Golgi apparatus is an essential component of the secretory pathway, yet little is known about the concentration or redox state of GSH in this organelle. Here, we characterized the redox state of GSH in the Golgi apparatus using a combination of microscopy and proteomics methods. Our results prove that the Golgi apparatus is a highly oxidizing organelle with a strikingly low GSH concentration (<em>E</em><sub>GSH</sub> = – 157 mV, 1–5 mM). These results fill an important gap in our knowledge of redox homeostasis in subcellular organelles. Moreover, the new Golgi-targeted GSH sensors allow us to observe dynamic changes in the GSH redox state in the organelle and pave the way for further characterization of the Golgi redox state under various physiological and pathological conditions.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103560"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000734","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Redox homeostasis is crucial for cell function, and, in eukaryotic cells, studying it in a compartmentalized way is essential due to the redox variations between different organelles. The redox state of organelles is largely determined by the redox potential of glutathione, EGSH, and the concentration of its reduced and oxidized species, [GS]. The Golgi apparatus is an essential component of the secretory pathway, yet little is known about the concentration or redox state of GSH in this organelle. Here, we characterized the redox state of GSH in the Golgi apparatus using a combination of microscopy and proteomics methods. Our results prove that the Golgi apparatus is a highly oxidizing organelle with a strikingly low GSH concentration (EGSH = – 157 mV, 1–5 mM). These results fill an important gap in our knowledge of redox homeostasis in subcellular organelles. Moreover, the new Golgi-targeted GSH sensors allow us to observe dynamic changes in the GSH redox state in the organelle and pave the way for further characterization of the Golgi redox state under various physiological and pathological conditions.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.