{"title":"Severe plastic deformation promoted simultaneous enhancement in strength and ductility of multilayer MXene/Ag matrix composites","authors":"Yunsong Xu , Weiwei Zhou , Li-Fu Yi , Itsuki Kubo , Zhenxing Zhou , Zhong-Chun Chen , Naoyuki Nomura","doi":"10.1016/j.scriptamat.2025.116612","DOIUrl":null,"url":null,"abstract":"<div><div>The insufficient mechanical performance of Ag poses a critical challenge for its application as an electrical contact material. In this study, a strategy was developed that employed severe plastic deformation to design a strong and ductile 3 vol% MXene/Ag matrix composite. Multilayer MXene was randomly incorporated into an Ag matrix via a heteroagglomeration process and spark plasma sintering. After hot extrusion, the MXene became preferentially oriented along a single direction owing to the metallic plastic flow. Moreover, the high shear stress exerted by the Ag matrix facilitated the exfoliation of the accordion-like MXene, resulting in a reduced thickness. Consequently, the tensile strength and elongation of the hot-extruded MXene/Ag composite improved by 59 % and 676 %, respectively, primarily due to the prevention of delamination between adjacent accordion flakes and the enhanced strengthening contribution of MXene. This study demonstrated the fabrication of high-performance Ag-based composites by leveraging the exceptional properties of two-dimensional MXene and the intrinsic features of the consolidation process.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"261 ","pages":"Article 116612"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225000752","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The insufficient mechanical performance of Ag poses a critical challenge for its application as an electrical contact material. In this study, a strategy was developed that employed severe plastic deformation to design a strong and ductile 3 vol% MXene/Ag matrix composite. Multilayer MXene was randomly incorporated into an Ag matrix via a heteroagglomeration process and spark plasma sintering. After hot extrusion, the MXene became preferentially oriented along a single direction owing to the metallic plastic flow. Moreover, the high shear stress exerted by the Ag matrix facilitated the exfoliation of the accordion-like MXene, resulting in a reduced thickness. Consequently, the tensile strength and elongation of the hot-extruded MXene/Ag composite improved by 59 % and 676 %, respectively, primarily due to the prevention of delamination between adjacent accordion flakes and the enhanced strengthening contribution of MXene. This study demonstrated the fabrication of high-performance Ag-based composites by leveraging the exceptional properties of two-dimensional MXene and the intrinsic features of the consolidation process.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.