{"title":"The Frenet immersed finite element method for elliptic interface problems: An error analysis","authors":"Slimane Adjerid , Tao Lin , Haroun Meghaichi","doi":"10.1016/j.cma.2025.117829","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents an error analysis of the recently introduced Frenet immersed finite element (IFE) method. The Frenet IFE space employed in this method is constructed to be locally conforming to the function space of the associated weak form for the interface problem. This article further establishes a critical trace inequality for the Frenet IFE functions. These features enable us to prove that the Frenet IFE method converges optimally under mesh refinement in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and energy norms.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"438 ","pages":"Article 117829"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500101X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an error analysis of the recently introduced Frenet immersed finite element (IFE) method. The Frenet IFE space employed in this method is constructed to be locally conforming to the function space of the associated weak form for the interface problem. This article further establishes a critical trace inequality for the Frenet IFE functions. These features enable us to prove that the Frenet IFE method converges optimally under mesh refinement in both and energy norms.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.