Design and characterization of porphyrin-based photosensitizing metalloproteins integrated with artificial metalloenzymes for photocatalytic hydrogen production
L.V. Opdam , S.K. Goetzfried , E. Polanco , S. Bonnet , A. Pandit
{"title":"Design and characterization of porphyrin-based photosensitizing metalloproteins integrated with artificial metalloenzymes for photocatalytic hydrogen production","authors":"L.V. Opdam , S.K. Goetzfried , E. Polanco , S. Bonnet , A. Pandit","doi":"10.1016/j.jinorgbio.2025.112855","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is regarded as a promising alternative to fossil fuels. A desirable method of its generation is via photocatalysis, combining photosensitizers and hydrogen-evolution catalysts in the presence of an electron donor. Inspired by natural photosynthesis, we designed photosensitizing artificial metalloproteins (ArMs) and integrated them with ArM-based catalysts for photocatalytic hydrogen production from water. Metal porphyrins based on protoporphyrin IX (PPIX) were employed as they are naturally abundant and are effective both as photosensitizers and hydrogen-evolution catalysts. Photosensitizing proteins were created by binding zinc (Zn)PPIX or ruthenium (Ru)PPIX to the haem acquisition system A <em>from Pseudomonas aeruginosa</em> (HasAp). The photosensitizer ArMs were combined with cobalt (Co)PPIX-myoglobin (Mb) or free CoPPIX as hydrogen evolution catalysts. We found that free CoPPIX could replace ZnPPIX or RuPPIX in HasAp, forming CoPPIX-HasAp or RuPPIX-CoPPIX-HasAp complexes with enhanced stability compared to CoPPIX-Mb. Photocatalytic hydrogen production was achieved upon irradiation at 435 nm (ZnPPIX) or 385 nm (RuPPIX), using methyl viologen as an electron carrier and triethanolamine as an electron donor. The ZnPPIX-HasAp/CoPPIX-HasAp system remained intact and active for approximately 42 h, while Ru-based systems that were excited by UV light, exhibited signs of protein cleavage upon prolonged irradiation. These results demonstrate the potential of integrating porphyrin-based ArMs for photosensitization and hydrogen evolution, with HasAp providing a robust scaffold for sustained photocatalytic activity.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"267 ","pages":"Article 112855"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425000352","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is regarded as a promising alternative to fossil fuels. A desirable method of its generation is via photocatalysis, combining photosensitizers and hydrogen-evolution catalysts in the presence of an electron donor. Inspired by natural photosynthesis, we designed photosensitizing artificial metalloproteins (ArMs) and integrated them with ArM-based catalysts for photocatalytic hydrogen production from water. Metal porphyrins based on protoporphyrin IX (PPIX) were employed as they are naturally abundant and are effective both as photosensitizers and hydrogen-evolution catalysts. Photosensitizing proteins were created by binding zinc (Zn)PPIX or ruthenium (Ru)PPIX to the haem acquisition system A from Pseudomonas aeruginosa (HasAp). The photosensitizer ArMs were combined with cobalt (Co)PPIX-myoglobin (Mb) or free CoPPIX as hydrogen evolution catalysts. We found that free CoPPIX could replace ZnPPIX or RuPPIX in HasAp, forming CoPPIX-HasAp or RuPPIX-CoPPIX-HasAp complexes with enhanced stability compared to CoPPIX-Mb. Photocatalytic hydrogen production was achieved upon irradiation at 435 nm (ZnPPIX) or 385 nm (RuPPIX), using methyl viologen as an electron carrier and triethanolamine as an electron donor. The ZnPPIX-HasAp/CoPPIX-HasAp system remained intact and active for approximately 42 h, while Ru-based systems that were excited by UV light, exhibited signs of protein cleavage upon prolonged irradiation. These results demonstrate the potential of integrating porphyrin-based ArMs for photosensitization and hydrogen evolution, with HasAp providing a robust scaffold for sustained photocatalytic activity.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.