Nilusha L. Kariyawasam , Anastasiia Sivchenko , Liskin Swint-Kruse , Paul E. Smith
{"title":"Substitutions at rheostat position 52 of LacI have long-range effects on the LacI conformational landscape","authors":"Nilusha L. Kariyawasam , Anastasiia Sivchenko , Liskin Swint-Kruse , Paul E. Smith","doi":"10.1016/j.bpc.2025.107414","DOIUrl":null,"url":null,"abstract":"<div><div>In proteins, amino acid changes at “rheostat” positions exhibit functional changes that vary with the substitution chosen: some substitutions enhance function, some are like wild-type, some are partially detrimental, while others abolish function. One way that substitutions might exert their complex effects is by altering protein conformational landscapes. To test this, we studied five substitutions of V52 in <em>E. coli</em> LacI, an experimentally-known rheostat position. For each variant, we mapped the accessible conformational landscapes by performing molecular dynamics simulations at ambient conditions and under three perturbations: increased pressure, binding to allosteric ligand “ONPF”, and ONPF plus pressure. The simulated DNA binding domain landscapes were compared to published experimentally-measured parameters, and the results suggest that complex combinations of dynamic parameters and/or additional simulations in the presence of DNA are needed to predict DNA binding specificity. For the variants regulatory domains all landscapes displayed boundaries similar to wild-type, but changes within the boundaries were unique. Of these, V52A/ONPF was striking: The regulatory domains for ONPF-bound, wild-type LacI are in an “Open” conformation and, experimentally, ONPF enhances DNA binding. Four variants responded to ONPF like wild-type, but ONPF binding to V52A shifted these domains to a “Closed” conformation that is associated with diminished DNA binding for wild-type LacI. This finding predicted that ONPF's allosteric regulation of V52A would change from “anti-inducer” to “inducer”, which we experimentally validated <em>in vivo</em> and <em>in vitro</em>. This supports the hypothesis that substituting rheostat positions can alter function by altering the relative populations on protein conformational landscapes.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"320 ","pages":"Article 107414"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000262","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In proteins, amino acid changes at “rheostat” positions exhibit functional changes that vary with the substitution chosen: some substitutions enhance function, some are like wild-type, some are partially detrimental, while others abolish function. One way that substitutions might exert their complex effects is by altering protein conformational landscapes. To test this, we studied five substitutions of V52 in E. coli LacI, an experimentally-known rheostat position. For each variant, we mapped the accessible conformational landscapes by performing molecular dynamics simulations at ambient conditions and under three perturbations: increased pressure, binding to allosteric ligand “ONPF”, and ONPF plus pressure. The simulated DNA binding domain landscapes were compared to published experimentally-measured parameters, and the results suggest that complex combinations of dynamic parameters and/or additional simulations in the presence of DNA are needed to predict DNA binding specificity. For the variants regulatory domains all landscapes displayed boundaries similar to wild-type, but changes within the boundaries were unique. Of these, V52A/ONPF was striking: The regulatory domains for ONPF-bound, wild-type LacI are in an “Open” conformation and, experimentally, ONPF enhances DNA binding. Four variants responded to ONPF like wild-type, but ONPF binding to V52A shifted these domains to a “Closed” conformation that is associated with diminished DNA binding for wild-type LacI. This finding predicted that ONPF's allosteric regulation of V52A would change from “anti-inducer” to “inducer”, which we experimentally validated in vivo and in vitro. This supports the hypothesis that substituting rheostat positions can alter function by altering the relative populations on protein conformational landscapes.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.