Substitutions at rheostat position 52 of LacI have long-range effects on the LacI conformational landscape

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nilusha L. Kariyawasam , Anastasiia Sivchenko , Liskin Swint-Kruse , Paul E. Smith
{"title":"Substitutions at rheostat position 52 of LacI have long-range effects on the LacI conformational landscape","authors":"Nilusha L. Kariyawasam ,&nbsp;Anastasiia Sivchenko ,&nbsp;Liskin Swint-Kruse ,&nbsp;Paul E. Smith","doi":"10.1016/j.bpc.2025.107414","DOIUrl":null,"url":null,"abstract":"<div><div>In proteins, amino acid changes at “rheostat” positions exhibit functional changes that vary with the substitution chosen: some substitutions enhance function, some are like wild-type, some are partially detrimental, while others abolish function. One way that substitutions might exert their complex effects is by altering protein conformational landscapes. To test this, we studied five substitutions of V52 in <em>E. coli</em> LacI, an experimentally-known rheostat position. For each variant, we mapped the accessible conformational landscapes by performing molecular dynamics simulations at ambient conditions and under three perturbations: increased pressure, binding to allosteric ligand “ONPF”, and ONPF plus pressure. The simulated DNA binding domain landscapes were compared to published experimentally-measured parameters, and the results suggest that complex combinations of dynamic parameters and/or additional simulations in the presence of DNA are needed to predict DNA binding specificity. For the variants regulatory domains all landscapes displayed boundaries similar to wild-type, but changes within the boundaries were unique. Of these, V52A/ONPF was striking: The regulatory domains for ONPF-bound, wild-type LacI are in an “Open” conformation and, experimentally, ONPF enhances DNA binding. Four variants responded to ONPF like wild-type, but ONPF binding to V52A shifted these domains to a “Closed” conformation that is associated with diminished DNA binding for wild-type LacI. This finding predicted that ONPF's allosteric regulation of V52A would change from “anti-inducer” to “inducer”, which we experimentally validated <em>in vivo</em> and <em>in vitro</em>. This supports the hypothesis that substituting rheostat positions can alter function by altering the relative populations on protein conformational landscapes.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"320 ","pages":"Article 107414"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000262","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In proteins, amino acid changes at “rheostat” positions exhibit functional changes that vary with the substitution chosen: some substitutions enhance function, some are like wild-type, some are partially detrimental, while others abolish function. One way that substitutions might exert their complex effects is by altering protein conformational landscapes. To test this, we studied five substitutions of V52 in E. coli LacI, an experimentally-known rheostat position. For each variant, we mapped the accessible conformational landscapes by performing molecular dynamics simulations at ambient conditions and under three perturbations: increased pressure, binding to allosteric ligand “ONPF”, and ONPF plus pressure. The simulated DNA binding domain landscapes were compared to published experimentally-measured parameters, and the results suggest that complex combinations of dynamic parameters and/or additional simulations in the presence of DNA are needed to predict DNA binding specificity. For the variants regulatory domains all landscapes displayed boundaries similar to wild-type, but changes within the boundaries were unique. Of these, V52A/ONPF was striking: The regulatory domains for ONPF-bound, wild-type LacI are in an “Open” conformation and, experimentally, ONPF enhances DNA binding. Four variants responded to ONPF like wild-type, but ONPF binding to V52A shifted these domains to a “Closed” conformation that is associated with diminished DNA binding for wild-type LacI. This finding predicted that ONPF's allosteric regulation of V52A would change from “anti-inducer” to “inducer”, which we experimentally validated in vivo and in vitro. This supports the hypothesis that substituting rheostat positions can alter function by altering the relative populations on protein conformational landscapes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信