Graphitic carbon with increased interlayer spacing derived from low-temperature CO2 rapid conversion for high-performance potassium storage

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhenzhe Wei , Yu Shi , Peng Li , Mingxia Gao , Xiaoyu Zhang , Hongge Pan , Chu Liang
{"title":"Graphitic carbon with increased interlayer spacing derived from low-temperature CO2 rapid conversion for high-performance potassium storage","authors":"Zhenzhe Wei ,&nbsp;Yu Shi ,&nbsp;Peng Li ,&nbsp;Mingxia Gao ,&nbsp;Xiaoyu Zhang ,&nbsp;Hongge Pan ,&nbsp;Chu Liang","doi":"10.1016/j.jcis.2025.02.097","DOIUrl":null,"url":null,"abstract":"<div><div>Graphitic carbon has been emerged as one of the most promising anode materials for potassium-ion batteries (PIBs) due to its moderate theoretical specific capacity, high electrical conductivity, and outstanding chemical stability. However, the structure of graphitic carbon usually experiences irreversible damage during the charge and discharge process, primarily due to the large radius of potassium ion. In contrast to the traditional preparation methods, we develop a low-carbon approach to obtain graphitic carbon with larger lattice spacing via a rapid chemical conversion between CO<sub>2</sub> and NaAlH<sub>4</sub> at ∼62 °C. We confirm that the CO<sub>2</sub>/NaAlH<sub>4</sub> ratio plays a crucial role in increasing the degree of graphitization and promoting the formation of a flaky morphology of carbon materials. When applied as an anode material for potassium storage, the prepared graphitic carbon exhibits outstanding cycling stability and rate performance. It maintains a reversible capacity of 210 mAh g<sup>−1</sup> after 1000 cycles at a current density of 0.1 A g<sup>−1</sup>, with a capacity retention rate of 95.9 %. This efficient method of preparing graphitic carbon provides valuable inspiration for the development of advanced energy storage materials.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 842-850"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004515","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon has been emerged as one of the most promising anode materials for potassium-ion batteries (PIBs) due to its moderate theoretical specific capacity, high electrical conductivity, and outstanding chemical stability. However, the structure of graphitic carbon usually experiences irreversible damage during the charge and discharge process, primarily due to the large radius of potassium ion. In contrast to the traditional preparation methods, we develop a low-carbon approach to obtain graphitic carbon with larger lattice spacing via a rapid chemical conversion between CO2 and NaAlH4 at ∼62 °C. We confirm that the CO2/NaAlH4 ratio plays a crucial role in increasing the degree of graphitization and promoting the formation of a flaky morphology of carbon materials. When applied as an anode material for potassium storage, the prepared graphitic carbon exhibits outstanding cycling stability and rate performance. It maintains a reversible capacity of 210 mAh g−1 after 1000 cycles at a current density of 0.1 A g−1, with a capacity retention rate of 95.9 %. This efficient method of preparing graphitic carbon provides valuable inspiration for the development of advanced energy storage materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信