Cognitive AI and implicit pseudo-spline wavelets for enhanced seismic prediction

Mutaz Mohammad
{"title":"Cognitive AI and implicit pseudo-spline wavelets for enhanced seismic prediction","authors":"Mutaz Mohammad","doi":"10.1016/j.ijcce.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Using data from 1900 to 2024, this study developed an innovative artificial intelligence (AI)-powered framework for predicting earthquakes in Japan. By incorporating state-of-the-art cognitive computing techniques with expert seismic assessments, the proposed algorithm addresses some of the complex challenges in earthquake prediction. The model fuses AI systems with numerical methods such as the Finite Element Method (FEM) and pseudo-spline collocation techniques to simulate seismic wave propagation in a stratified spherical Earth. This study employed cognitive computing mechanisms to categorize and analyze seismic activities using a vector-based structure that compares past seismic events with predefined classifications. Moreover, the framework integrates expert knowledge of the stress distribution in the Earth’s crust to establish a comprehensive model for seismic forecasting. This AI-driven methodology provides deeper insight into seismic wave behavior and introduces a self-improving data-centric system that could support decision-making for reducing earthquake risk.</div></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"6 ","pages":"Pages 401-411"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307425000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using data from 1900 to 2024, this study developed an innovative artificial intelligence (AI)-powered framework for predicting earthquakes in Japan. By incorporating state-of-the-art cognitive computing techniques with expert seismic assessments, the proposed algorithm addresses some of the complex challenges in earthquake prediction. The model fuses AI systems with numerical methods such as the Finite Element Method (FEM) and pseudo-spline collocation techniques to simulate seismic wave propagation in a stratified spherical Earth. This study employed cognitive computing mechanisms to categorize and analyze seismic activities using a vector-based structure that compares past seismic events with predefined classifications. Moreover, the framework integrates expert knowledge of the stress distribution in the Earth’s crust to establish a comprehensive model for seismic forecasting. This AI-driven methodology provides deeper insight into seismic wave behavior and introduces a self-improving data-centric system that could support decision-making for reducing earthquake risk.
认知人工智能和隐式伪样条小波增强地震预测
利用1900年至2024年的数据,这项研究开发了一个创新的人工智能(AI)驱动的框架,用于预测日本的地震。通过将最先进的认知计算技术与专家地震评估相结合,提出的算法解决了地震预测中的一些复杂挑战。该模型将人工智能系统与有限元法(FEM)和伪样条配置技术等数值方法相结合,模拟地震波在分层球形地球中的传播。本研究采用认知计算机制,使用基于向量的结构对地震活动进行分类和分析,该结构将过去的地震事件与预定义的分类进行比较。此外,该框架整合了地壳应力分布的专家知识,建立了一个全面的地震预测模型。这种人工智能驱动的方法提供了对地震波行为的更深入了解,并引入了一个自我改进的以数据为中心的系统,可以支持降低地震风险的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信