3D spatial distribution of Sost mRNA and sclerostin protein expression in response to in vivo tibia loading in female mice

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2025-02-18 DOI:10.1016/j.bone.2025.117422
Quentin A. Meslier , Jacy Hoffmann , Robert Oehrlein , Daniel Kurczy , James R. Monaghan , Sandra J. Shefelbine
{"title":"3D spatial distribution of Sost mRNA and sclerostin protein expression in response to in vivo tibia loading in female mice","authors":"Quentin A. Meslier ,&nbsp;Jacy Hoffmann ,&nbsp;Robert Oehrlein ,&nbsp;Daniel Kurczy ,&nbsp;James R. Monaghan ,&nbsp;Sandra J. Shefelbine","doi":"10.1016/j.bone.2025.117422","DOIUrl":null,"url":null,"abstract":"<div><div>Bones adapt to external mechanical loads through a process known as mechanoadaptation. Osteocytes are the bone cells that sense the mechanical environment and initiate a biological response. Investigating the changes in osteocyte molecular expression following mechanical loading has been instrumental in characterizing the regulatory pathways involved in bone adaptation. However, current methods for examining osteocyte molecular expression do not preserve the three-dimensional structure of the bone, which plays a critical role in the mechanical stimuli sensed by the osteocytes and their spatially controlled biological responses.</div><div>In this study, we used WISH-BONE (Whole-mount In Situ Histology of Bone) to investigate the spatial distribution of <em>Sost</em>-mRNA transcripts and its encoded protein, sclerostin, in 3D mouse tibia midshaft following in vivo tibia loading. Our findings showed a decrease in the percentage of <em>Sost</em>-positive osteocytes, after loading, along the posterior-lateral side of the tibia. The number of sclerostin-positive osteocytes were found to significantly decrease at a very specific 2D location of the tibia after loading. However, in 3D, the total number of sclerostin-positive osteocytes was similar between loaded and control legs.</div><div>This work is the first to provide a 3D analysis of <em>Sost</em> and sclerostin distribution in loaded versus contralateral mouse tibia midshafts. It also highlights the importance of the bone region analyzed and the method utilized when interpreting mechanoadaptation results. WISH-BONE represents a powerful tool for further characterization of mechanosensitive genes regulation in bone and holds the potential for advancing the development of new treatments targeting mechanosensitivity-related bone disorders.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"193 ","pages":"Article 117422"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225000341","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Bones adapt to external mechanical loads through a process known as mechanoadaptation. Osteocytes are the bone cells that sense the mechanical environment and initiate a biological response. Investigating the changes in osteocyte molecular expression following mechanical loading has been instrumental in characterizing the regulatory pathways involved in bone adaptation. However, current methods for examining osteocyte molecular expression do not preserve the three-dimensional structure of the bone, which plays a critical role in the mechanical stimuli sensed by the osteocytes and their spatially controlled biological responses.
In this study, we used WISH-BONE (Whole-mount In Situ Histology of Bone) to investigate the spatial distribution of Sost-mRNA transcripts and its encoded protein, sclerostin, in 3D mouse tibia midshaft following in vivo tibia loading. Our findings showed a decrease in the percentage of Sost-positive osteocytes, after loading, along the posterior-lateral side of the tibia. The number of sclerostin-positive osteocytes were found to significantly decrease at a very specific 2D location of the tibia after loading. However, in 3D, the total number of sclerostin-positive osteocytes was similar between loaded and control legs.
This work is the first to provide a 3D analysis of Sost and sclerostin distribution in loaded versus contralateral mouse tibia midshafts. It also highlights the importance of the bone region analyzed and the method utilized when interpreting mechanoadaptation results. WISH-BONE represents a powerful tool for further characterization of mechanosensitive genes regulation in bone and holds the potential for advancing the development of new treatments targeting mechanosensitivity-related bone disorders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信